Predicting Cognitive Impairment in Cerebrovascular Disease Using Spoken Discourse Production
Document Type
Article
Publication Date
1-1-2021
Journal
Topics in Language Disorders
Volume
41
Issue
1
First Page
73
Last Page
98
URL with Digital Object Identifier
10.1097/TLD.0000000000000242
Abstract
Purpose: Dementia due to cerebrovascular disease (CVD) is common. Detecting early cognitive decline in CVD is critical because addressing risk factors may slow or prevent dementia. This study used a multidomain discourse analysis approach to determine the spoken language signature of CVD-related cognitive impairment. Method: Spoken language and neuropsychological assessment data were collected prospectively from 157 participants with CVD as part of the Ontario Neurodegenerative Disease Research Initiative, a longitudinal, observational study of neurodegenerative disease. Participants were categorized as impaired (n = 92) or cognitively normal for age (n = 65) based on neuropsychology criteria. Spoken language samples were transcribed orthographically and annotated for 13 discourse features, across five domains. Discriminant function analyses were used to determine a minimum set of discourse variables, and their estimated weights, for maximizing diagnostic group separation. Results: The optimal discriminant function that included 10 of 13 discourse measures correctly classified 78.3% of original cases (69.4% cross-validated cases) with a sensitivity of 77.2% and specificity of 80.0%. Conclusion: Spoken discourse appears to be a sensitive measure for detecting cognitive impairment in CVD with measures of productivity, information content, and information efficiency heavily weighted in the final algorithm.