Development of a computer aided diagnosis model for prostate cancer classification on multi-parametric MRI
Document Type
Conference Proceeding
Publication Date
1-1-2018
Journal
Progress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume
10575
URL with Digital Object Identifier
10.1117/12.2293341
Abstract
Multi-parametric MRI (mp-MRI) is becoming a standard in contemporary prostate cancer screening and diagnosis, and has shown to aid physicians in cancer detection. It offers many advantages over traditional systematic biopsy, which has shown to have very high clinical false-negative rates of up to 23% at all stages of the disease. However beneficial, mp-MRI is relatively complex to interpret and suffers from inter-observer variability in lesion localization and grading. Computer-aided diagnosis (CAD) systems have been developed as a solution as they have the power to perform deterministic quantitative image analysis. We measured the accuracy of such a system validated using accurately co-registered whole-mount digitized histology. We trained a logistic linear classifier (LOGLC), support vector machine (SVC), k-nearest neighbour (KNN) and random forest classifier (RFC) in a four part ROI based experiment against: 1) cancer vs. non-cancer, 2) high-grade (Gleason score ≥4+3) vs. low-grade cancer (Gleason score <4+3), 3) high-grade vs. other tissue components and 4) high-grade vs. benign tissue by selecting the classifier with the highest AUC using 1-10 features from forward feature selection. The CAD model was able to classify malignant vs. benign tissue and detect high-grade cancer with high accuracy. Once fully validated, this work will form the basis for a tool that enhances the radiologist's ability to detect malignancies, potentially improving biopsy guidance, treatment selection, and focal therapy for prostate cancer patients, maximizing the potential for cure and increasing quality of life.