Document Type
Article
Publication Date
12-1-2019
Journal
PLoS ONE
Volume
14
Issue
12
URL with Digital Object Identifier
10.1371/journal.pone.0226715
Abstract
© 2019 Haddad et al. The processing of brain diffusion tensor imaging (DTI) data for large cohort studies requires fully automatic pipelines to perform quality control (QC) and artifact/outlier removal procedures on the raw DTI data prior to calculation of diffusion parameters. In this study, three automatic DTI processing pipelines, each complying with the general ENIGMA framework, were designed by uniquely combining multiple image processing software tools. Different QC procedures based on the RESTORE algorithm, the DTIPrep protocol, and a combination of both methods were compared using simulated ground truth and artifact containing DTI datasets modeling eddy current induced distortions, various levels of motion artifacts, and thermal noise. Variability was also examined in 20 DTI datasets acquired in subjects with vascular cognitive impairment (VCI) from the multi-site Ontario Neurodegenerative Disease Research Initiative (ONDRI). The mean fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were calculated in global brain grey matter (GM) and white matter (WM) regions. For the simulated DTI datasets, the measure used to evaluate the performance of the pipelines was the normalized difference between the mean DTI metrics measured in GM and WM regions and the corresponding ground truth DTI value. The performance of the proposed pipelines was very similar, particularly in FA measurements. However, the pipeline based on the RESTORE algorithm was the most accurate when analyzing the artifact containing DTI datasets. The pipeline that combined the DTIPrep protocol and the RESTORE algorithm produced the lowest standard deviation in FA measurements in normal appearing WM across subjects. We concluded that this pipeline was the most robust and is preferred for automated analysis of multisite brain DTI data.
Citation of this paper:
Haddad SMH, Scott CJM, Ozzoude M, Holmes MF, Arnott SR, et al. (2019) Comparison of quality control methods for automated diffusion tensor imaging analysis pipelines. PLOS ONE 14(12): e0226715. https://doi.org/10.1371/journal.pone.0226715