Document Type
Article
Publication Date
7-16-2014
Journal
Physiological Reports
Volume
2
Issue
7
First Page
12068
Last Page
12068
URL with Digital Object Identifier
https://doi.org/10.14814/phy2.12068
Abstract
Noble gas pulmonary magnetic resonance imaging (MRI) is transitioning away from (3)He to (129)Xe gas, but the physiological/clinical relevance of (129)Xe apparent diffusion coefficient (ADC) parenchyma measurements is not well understood. Therefore, our objective was to generate (129)Xe MRI ADC for comparison with (3)He ADC and with well-established measurements of alveolar structure and function in older never-smokers and ex-smokers with chronic obstructive pulmonary disease (COPD). In four never-smokers and 10 COPD ex-smokers, (3)He (b = 1.6 sec/cm(2)) and (129)Xe (b = 12, 20, and 30 sec/cm(2)) ADC, computed tomography (CT) density-threshold measurements, and the diffusing capacity for carbon monoxide (DLCO) were measured. To understand regional differences, the anterior-posterior (APG) and superior-inferior (∆SI) ADC differences were evaluated. Compared to never-smokers, COPD ex-smokers showed greater (3)He ADC (P = 0.006), (129)Xe ADCb12 (P = 0.006), and ADCb20 (P = 0.006), but not for ADCb30 (P > 0.05). Never-smokers and COPD ex-smokers had significantly different APG for (3)He ADC (P = 0.02), (129)Xe ADCb12 (P = 0.006), and ADCb20 (P = 0.01), but not for ADCb30 (P > 0.05). ∆SI for never- and ex-smokers was significantly different for (3)He ADC (P = 0.046), but not for (129)Xe ADC (P > 0.05). There were strong correlations for DLCO with (3)He ADC and (129)Xe ADCb12 (both r = -0.95, P < 0.05); in a multivariate model (129)Xe ADCb12 was the only significant predictor of DLCO (P = 0.049). For COPD ex-smokers, CT relative area
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Notes
This article was initially published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society and is openly available on the publisher's website at: https://doi.org/10.14814/phy2.12068