Biology Publications

Document Type

Article

Publication Date

10-5-2011

Journal

Physiology and Molecular Biology of Plants

Volume

17

Issue

4

First Page

317

Last Page

325

URL with Digital Object Identifier

http://dx.doi.org/ 10.1007/s12298-011-0086-2

Abstract

Concentrations of cadmium in the grain of durum wheat (Triticum turgidum L. var durum) are often above the internationally acceptable limit of 0.2 mg kg−1. Cultivars that vary in concentrations of cadmium in the grain have been identified but the physiology behind differential accumulation has not been determined. Three pairs of near-isogenic lines (isolines) of durum wheat that vary in aboveground cadmium accumulation (8982-TL ‘high’ and ‘low’, W9260-BC ‘high’ and ‘low’, and W9261-BG ‘high’ and ‘low’) were used to test the hypothesis that the greater amounts of cadmium in shoots of the ‘high’ isolines are correlated with greater volumes of water transpired. In general, cadmium content was positively correlated with transpiration only in the ‘low’ isolines. Although shoots of the ‘high’ isolines of W9260-BC and W9261-BG contained higher concentrations of cadmium than did their corresponding ‘low’ isolines, they did not transpire larger volumes of water. In addition, isolines of 8982-TL transpired less water than did the other pairs of isolines yet both ‘high’ and ‘low’ isolines of 8982-TL contained higher amounts of cadmium than did the other pairs. The difference between ‘high’ and ‘low’ isolines appears to be related to the relative contribution of transpiration to cadmium translocation to the shoot. Increased transpiration was associated with increased cadmium content in the ‘low’ isolines but in the ‘high’ isolines increased cadmium in the shoot occurred independently of the volume of water transpired.

Notes

The final publication is available at Springer via http://dx.doi.org/10.1007/s12298-011-0086-2

Find in your library

Included in

Biology Commons

Share

COinS