Biochemistry Publications
Characterization of the Monomer-dimer Equilibrium of Recombinant Histo-aspartic Protease from Plasmodium Falciparum
Document Type
Article
Publication Date
9-2010
Journal
Molecular and Biochemical Parasitology
Volume
173
Issue
1
First Page
17
Last Page
24
URL with Digital Object Identifier
http://dx.doi.org/10.1016/j.molbiopara.2010.04.008
Abstract
Histo-aspartic protease (HAP) from Plasmodium falciparum is an intriguing aspartic protease due to its unique structure. Our previous study reported the first recombinant expression of soluble HAP, in its truncated form (lys77p-Leu328) (p denotes prosegment), as a thioredoxin (Trx) fusion protein Trx-tHAP. The present study found that the recombinant Trx-tHAP fusion protein aggregated during purification which could be prevented through the addition of 0.2% CHAPS. Trx-tHAP fusion protein was processed into a mature form of tHAP (mtHAP) by both autoactivation, and activation with either enterokinase or plasmepsin II. Using gel filtration chromatography as well as sedimentation velocity and equilibrium ultracentrifugation, it was shown that the recombinant mtHAP exists in a dynamic monomer-dimer equilibrium with an increasing dissociation constant in the presence of CHAPS. Enzymatic activity data indicated that HAP was most active as a monomer. The dominant monomeric form showed a K(m) of 2.0 microM and a turnover number, k(cat), of 0.036s(-1) using the internally quenched fluorescent synthetic peptide substrate EDANS-CO-CH(2)-CH(2)-CO-Ala-Leu-Glu-Arg-Met-Phe-Leu-Ser-Phe-Pro-Dap-(DABCYL)-OH (2837b) at pH 5.2.