Biochemistry Publications

Document Type

Article

Publication Date

12-23-2021

Journal

F1000Research

Volume

10

Issue

doi: 10.12688/f1000research.75891.1

First Page

1312

URL with Digital Object Identifier

10.12688/f1000research.75891.1

Abstract

Introduction: This study aimed to produce community-level geo-spatial mapping of confirmed COVID-19 cases in Ontario Canada in near real-time to support decision-making. This was accomplished by area-to-area geostatistical analysis, space-time integration, and spatial interpolation of COVID-19 positive individuals.
Methods: COVID-19 cases and locations were curated for geostatistical analyses from March 2020 through June 2021, corresponding to the first, second, and third waves of infections. Daily cases were aggregated according to designated forward sortation area (FSA), and postal codes (PC) in municipal regions Hamilton, Kitchener/Waterloo, London, Ottawa, Toronto, and Windsor/Essex county. Hotspots were identified with area-to-area tests including Getis-Ord Gi*, Global Moran’s I spatial autocorrelation, and Local Moran’s I asymmetric clustering and outlier analyses. Case counts were also interpolated across geographic regions by Empirical Bayesian Kriging, which localizes high concentrations of COVID-19 positive tests, independent of FSA or PC boundaries. The Geostatistical Disease Epidemiology Toolbox, which is freely-available software, automates the identification of these regions and produces digital maps for public health professionals to assist in pandemic management of contact tracing and distribution of other resources.
Results: This study provided indicators in real-time of likely, community-level disease transmission through innovative geospatial analyses of COVID-19 incidence data. Municipal and provincial results were validated by comparisons with known outbreaks at long-term care and other high density residences and on farms. PC-level analyses revealed hotspots at higher geospatial resolution than public reports of FSAs, and often sooner. Results of different tests and kriging were compared to determine consistency among hotspot assignments. Concurrent or consecutive hotspots in close proximity suggested potential community transmission of COVID-19 from cluster and outlier analysis of neighboring PCs and by kriging. Results were also stratified by population based-categories (sex, age, and presence/absence of comorbidities).
Conclusions: Earlier recognition of hotspots could reduce public health burdens of COVID-19 and expedite contact tracing.

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Citation of this paper:

Mucaki EJ, Shirley BC and Rogan PK. Likely community transmission of COVID-19 infections between neighboring, persistent hotspots in Ontario, Canada [version 1; peer review: awaiting peer review]. F1000Research 2021, 10:1312 (https://doi.org/10.12688/f1000research.75891.1)

Share

COinS