Biochemistry Publications
Document Type
Conference Proceeding
Publication Date
3-2009
Abstract
Transcribed exons in genes are joined together at donor and acceptor splice sites precisely and efficiently to generate mRNAs capa ble of being translated into proteins. The sequence variability in individual splice sites can be modeled using Shannon information theory. In the laboratory, the degree of individual splice site use is inferred from the structures of mRNAs and their relative abundance. These structures can be predicted using a bipartite information theory framework that is guided by current knowledge of biological mechanisms for exon recognition. We present the results of this analysis for the complete dataset of all expressed human exons.
Notes
This paper was presented at the 43rd Annual IEEE Conference on Information Sciences and Systems in March 2009.