Anatomy and Cell Biology Publications
Document Type
Article
Publication Date
6-18-2015
Issue
6
Journal
PloS One
Volume
10
URL with Digital Object Identifier
10.1371/journal.pone.0130364
Abstract
The aging brain is often characterized by the presence of multiple comorbidities resulting in synergistic damaging effects in the brain as demonstrated through the interaction of Alzheimer's disease (AD) and stroke. Gangliosides, a family of membrane lipids enriched in the central nervous system, may have a mechanistic role in mediating the brain's response to injury as their expression is altered in a number of disease and injury states. Matrix-Assisted Laser Desorption Ionization (MALDI) Imaging Mass Spectrometry (IMS) was used to study the expression of A-series ganglioside species GD1a, GM1, GM2, and GM3 to determine alteration of their expression profiles in the presence of beta-amyloid (A beta) toxicity in addition to ischemic injury. To model a stroke, rats received a unilateral striatal injection of endothelin-1 (ET-1) (stroke alone group). To model A beta toxicity, rats received intracerebralventricular (icv) injections of the toxic 25-35 fragment of the A beta peptide (A beta alone group). To model the combination of A beta toxicity with stroke, rats received both the unilateral ET-1 injection and the bilateral icv injections of A beta(25-35) (combined A beta/ET-1 group). By 3 d, a significant increase in the simple ganglioside species GM2 was observed in the ischemic brain region of rats who received a stroke (ET-1), with or without A beta. By 21 d, GM2 levels only remained elevated in the combined A beta/ET-1 group. GM3 levels however demonstrated a different pattern of expression. By 3 d GM3 was elevated in the ischemic brain region only in the combined A beta/ET-1 group. By 21 d, GM3 was elevated in the ischemic brain region in both stroke alone and A beta/ET-1 groups. Overall, results indicate that the accumulation of simple ganglioside species GM2 and GM3 may be indicative of a mechanism of interaction between AD and stroke.