Anatomy and Cell Biology Publications

Document Type

Article

Publication Date

1-14-2019

Journal

Contrast Media & Molecular Imaging

URL with Digital Object Identifier

https://doi.org/10.1155/2019/6403274

Abstract

Apoptosis is a feature of stroke and Alzheimer's disease (AD), yet there is no accepted method to detect or follow apoptosis in the brain in vivo. We developed a bifunctional tracer [Ga-68]Ga-TC3-OGDOTA containing a cell-penetrating peptide separated from fluorescent Oregon Green and Ga-68-bound labels by the caspase-3 recognition peptide DEVD. We hypothesized that this design would allow [Ga-68]Ga-TC3-OGDOTA to accumulate in apoptotic cells. In vitro, Ga-TC3-OGDOTA labeled apoptotic neurons following exposure to camptothecin, oxygen-glucose deprivation, and -amyloid oligomers. In vivo, PET showed accumulation of [Ga-68]Ga-TC3-OGDOTA in the brain of mouse models of stroke or AD. Optical clearing revealed colocalization of [Ga-68]Ga-TC3-OGDOTA and cleaved caspase-3 in brain cells. In stroke, [Ga-68]Ga-TC3-OGDOTA accumulated in neurons in the penumbra area, whereas in AD mice [Ga-68]Ga-TC3-OGDOTA was found in single cells in the forebrain and diffusely around amyloid plaques. In summary, this bifunctional tracer is selectively associated with apoptotic cells in vitro and in vivo in brain disease models and represents a novel tool for apoptosis detection that can be used in neurodegenerative diseases.

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Find in your library

Share

COinS