Paediatrics Publications

Title

Posttranslational modifications of the retinoblastoma tumor suppressor protein as determinants of function

Document Type

Article

Publication Date

11-1-2012

Journal

Genes and Cancer

Volume

3

Issue

11-12

First Page

619

Last Page

633

URL with Digital Object Identifier

10.1177/1947601912473305

Abstract

The retinoblastoma tumor suppressor protein (pRB) plays an integral role in G1-S checkpoint control and consequently is a frequent target for inactivation in cancer. The RB protein can function as an adaptor, nucleating components such as E2Fs and chromatin regulating enzymes into the same complex. For this reason, pRB's regulation by posttranslational modifications is thought to be critical. pRB is phosphorylated by a number of different kinases such as cyclin dependent kinases (Cdks), p38 MAP kinase, Chk1/2, Abl, and Aurora b. Although phosphorylation of pRB by Cdks has been extensively studied, activities regulated through phosphorylation by other kinases are just starting to be understood. As well as being phosphorylated, pRB is acetylated, methylated, ubiquitylated, and SUMOylated. Acetylation, methylation, and SUMOylation play roles in pRB mediated gene silencing. Ubiquitinylation of pRB promotes its degradation and may be used to regulate apoptosis. Recent proteomic data have revealed that pRB is posttranslationally modified to a much greater extent than previously thought. This new information suggests that many unknown pathways affect pRB regulation. This review focuses on posttranslational modifications of pRB and how they influence its function. The final part of the review summarizes new phosphorylation sites from accumulated proteomic data and discusses the possibilities that might arise from this data. © The Author(s) 2013.

This document is currently not available here.

Share

COinS