Obstetrics & Gynaecology Publications

Document Type


Publication Date








URL with Digital Object Identifier



Despite advances in treatment, prognosis for most patients with high-grade serous carcinoma (HGSC) remains poor. Genomic alterations in the homologous recombination (HR) pathway are used for cancer risk assessment and render tumours sensitive to platinum-based chemotherapy and poly (ADP-ribose) polymerase inhibitors (PARPi), which can be associated with more favourable outcomes. In addition to patients with tumours containing BRCA1 or BRCA2 pathologic variants, there is emerging evidence that patients with tumours harbouring pathologic variants in other HR genes may also benefit from PARPi therapy. The objective of this study is to assess the feasibility of primary-tumour testing by examining the concordance of variant detection between germline and tumour-variant status using a custom hereditary cancer gene panel (HCP). From April 2019 to November 2020, HCP variant testing was performed on 146 HGSC formalin-fixed, paraffin-embedded tissue samples using next-generation sequencing. Of those, 78 patients also underwent HCP germline testing using blood samples. A pathogenic variant was detected in 41.1% (60/146) of tumours tested, with 68.3% (41/60) having either a BRCA1 or BRCA2 variant (n = 36), or BRCA1/2 plus a second variant (n = 5), and 31.2% (19/60) carrying a pathogenic variant in another HCP gene. The overall variant rate among the paired germline and tumour samples was 43.6% (34/78), with the remaining 56% (44/78) having no pathogenic variant detected in the germline or tumour. The overall BRCA1/2 variant rate for paired samples was 33.3% (26/78), with germline variants detected in 11.5% (9/78). A non-BRCA1/2 germline variant in another HCP gene was detected in 9.0% (7/78). All germline variants were detected in the tumour, demonstrating 100% concordance. These data provide evidence supporting the feasibility of primary-tumour testing for detecting germline and somatic variants in HCP genes in patients with HGSC, which can be used to guide clinical decision-making, and may provide opportunity for improving patient triage and clinical genetic referral practices.