Obstetrics & Gynaecology Publications

Ouabain sensitivity and expression of Na/K-ATPase alpha- and beta-subunit isoform genes during bovine early development.

Document Type


Publication Date



Molecular reproduction and development





First Page


Last Page



The fluid movements that arise during blastocyst formation (cavitation) are, at least in part, driven by the Na/K-ATPase. In this study, the reverse transcriptase-polymerase chain reaction (RT-PCR) was used to survey bovine pre-attachment embryos for transcripts encoding known isoforms of the Na/K-ATPase alpha- and beta-subunits, including isoforms not previously detected during the first week of mammalian development. Transcripts encoding the Na-K-ATPase alpha 1, alpha 2, alpha 3 and beta 2 isoforms were detected throughout bovine preattachment development. This is the first indication that alpha 2, alpha 3 and beta 2 mRNAs are expressed during this early developmental interval. As in the mouse, beta 1-subunit transcripts were not detected until the morula stage and were also present in blastocysts. Thus, in two mammalian species an increase in abundance of beta 1 isoform transcripts in the morula stage is coincident with the onset of cavitation. Transcripts encoding the recently characterized alpha 4 isoform were not detected. The sensitivity of bovine blastocysts to ouabain (a potent inhibitor of Na/K-ATPase) was determined by assessing the ability of bovine blastocysts to recover in ouabain supplemental culture medium following cytochalasin-induced blastocyst collapse. Re-expansion of bovine blastocysts was inhibited in all ouabain concentrations down to 10(-9) M. Mouse blastocysts, in contrast, were sensitive to ouabain at or above 10(-3)M. These results have established that transcripts encoding multiple isoforms of both the alpha and beta subunits of the Na/K-ATPase are expressed throughout early bovine development and that bovine blastocysts display a greater sensitivity to ouabain than murine blastocysts. Future analysis will determine the possible individual and collective roles of these isoforms during blastocyst formation.

Find in your library