Microbiology & Immunology Publications

Title

Inhibition of initial adhesion of uropathogenic Enterococcus faecalis to solid substrata by an adsorbed biosurfactant layer from Lactobacillus acidophilus

Document Type

Conference Proceeding

Publication Date

1-1-2003

Journal

Journal of Endourology

Volume

17

Issue

7

First Page

523

Last Page

527

URL with Digital Object Identifier

10.1089/089277903769013711

Abstract

Background and Purpose: Encrustation on indwelling ureteral stents is commonly related to the presence of urease-producing bacteria that elevate the pH of the urine through the hydrolysis of urea, resulting in the precipitation of calcium and magnesium salts. Using a model previously shown to measure accurately the ability of Proteus mirabilis to swarm over catheter surfaces (Eur J Clin Microbiol Infect Dis 1999;18:206), we investigated the ability of this organism to swarm over three ureteral stents with potential encrustation-resistance properties. Materials and Methods: Three commercially available ureteral stents were selected for evaluation: a low surface-energy stent, a hydrogel-coated stent, and a silicone stent. Ten-microliter aliquots of a 4-hour culture of P. mirabilis 296 in Trypticase soya (TSA) broth was inoculated 5 mm from a 1-cm channel cut out from TSA plates. Ten-millimeter stent sections were placed as bridges across the central channel adjacent to the inocula. Time to pathogen crossing was measured. Results: The mean time (±SD) to pathogen migration across the three test materials was 15.9 ± 6.1, 19.8 ± 9.5, and 29.7 ± 14.3 hours for the low surface-energy, hydrogel-coated, and silicone stents, respectively. Statistical analysis revealed significant differences between the crossing times of the low surface-energy (P = 0.001) and hydrogel-coated (P = 0.034) stents compared with silicone but not between the low surface-energy and hydrogel-coated stents (P = 0.387). Conclusion: Migration of P. mirabilis 296 across silicone stents was significantly reduced compared with low surface-energy and hydrogel-coated stents. These findings suggest that P. mirabilis may have a lower affinity for silicone stents, which may translate into a reduced risk of infection with P. mirabilis and associated stent encrustation.

This document is currently not available here.

Share

COinS