Receptor-interacting Protein-2 Deficiency Delays Macrophage Migration and Increases Intracellular Infection during Peritoneal Dialysis-associated Peritonitis

Document Type


Publication Date



American Journal of Nephrology





First Page


Last Page



Background: Early upregulation of receptor-interacting protein-2 (RIP2) expression during peritoneal dialysis (PD)-associated peritonitis correlates with a favorable clinical outcome, while failure to upregulate RIP2 correlates with a protracted course. We noticed that patients who do not upregulate RIP2 during PD-associated peritonitis have more peritoneal macrophages during the early phase of infection.

Methods: To study the mechanism behind this observation, we examined the role of RIP2 in the immune response to bacterial challenge in a mouse model of acute peritonitis. We injected RIP2(+/+) and RIP2(-/-) mice intraperitoneally with a Staphylococcus epidermidis cell free-preparation, and peritoneal cells were isolated 3, 6 and 24 h after challenge.

Results: Surprisingly, RIP2(-/-) mice had a comparable influx of inflammatory leukocytes, but had a significantly higher number of peritoneal macrophages at 3 h, indicating delayed emigration of these cells. No significant differences were seen at later times suggesting that migration was delayed but not inhibited. In addition, RIP2(-/-) macrophages were more permissive to intracellular infection by Staphylococcus aureus, indicating that, in the absence of RIP2, resident peritoneal macrophages could become reservoirs of bacteria.

Conclusion: These findings provide a mechanism for the observation that upregulation of RIP2 expression is required for rapid resolution of peritonitis, by decreasing intracellular infection and by regulating the migration of antigen-presenting cells in the early stages of an inflammatory response.


Published in: Am J Nephrol, 2008, 28:879-889. DOI: 10.1159/000141041