Electronic Thesis and Dissertation Repository


Doctor of Philosophy


Electrical and Computer Engineering


Dr. Rajiv K. Varma


Solar Farms are absolutely idle in the night and even during daytime operate below capacity in early mornings and late afternoons. Thus, the entire expensive asset of solar farms remains highly unutilized. This thesis presents novel technologies for utilization of PV solar farm inverter in nighttime for providing multiple benefits to power systems, as well as accomplishing the same objectives during the daytime from the inverter capacity left after production of real power. The new technology transforms a solar farm inverter functionally into a dynamic reactive power compensator known as STATCOM, and termed PV-STATCOM.

A novel coordinated control of PV-STATCOMs is proposed for loss reduction in a distribution network. The saved energy is substantial and can be used for powering several homes annually. The second novel PV-STATCOM control involves a temporary curtailment of real power production and utilization of the available reactive power capacity to prevent the instability of a critical induction motor load. The third novel PVSTATCOM control is employed to significantly enhance the power transfer limit of a long transmission line both in the nighttime and also during daytime even when the solar farm is producing a large amount of real power. A new technique for short circuit current management is developed for a conventional PV solar farm that can potentially solve the problem due to which several solar farms have been denied connectivity in Ontario. This thesis has contributed to two patent applications and presented first time implementations of another two filed patents.

A generalized PV solar system model in EMTDC/PSCAD software has been developed and validated with manufacturer's datasheet. Another contribution of this thesis is the first time harmonics impact study of the largest solar farm in Canada, in the distribution utility network of Bluewater Power, in Sarnia, Ontario.

This thesis makes a strong case for relaxing the present grid codes to allow solar farms to exercise these novel controls. This technology can open up new avenues for solar farms to earn revenues apart from the sale of real power. This will require appropriate agreements between the regulators, network utilities, solar farm developers and inverter manufacturers.