Electronic Thesis and Dissertation Repository


Doctor of Philosophy




Derek G. V. Mitchell


In our daily environment, we are constantly encountering an endless stream of information which we must be able to sort and prioritize. Some of the features that influence this are the emotional nature of stimuli and the emotional context of events. Emotional information is often given preferential access to neurocognitive resources, including within sensory processing systems. Interestingly, both auditory and visual systems are divided into dual processing streams; a ventral object identity/perception stream and a dorsal object location/action stream. While effects of emotion on the ventral streams are relatively well defined, its effect on dorsal stream processes remains unclear.

The present thesis aimed to investigate the impact of emotion on sensory systems within a dual pathway framework of sensory processing. Study I investigated the role of emotion during auditory localization. While undergoing fMRI, participants indicated the location of an emotional or non-emotional sound within an auditory virtual environment. This revealed that the neurocognitive structures displaying activation modulated by emotion were not the same as those modulated by sound location. Emotion was represented in regions associated with the putative auditory ‘what’ but not ‘where’ stream. Study II examined the impact of emotion on ostensibly similar localization behaviours mediated differentially by the dorsal versus ventral visual processing stream. Ventrally-mediated behaviours were demonstrated to be impacted by the emotional context of a trial, while dorsally-mediated behaviours were not. For Study III, a motion-aftereffect paradigm was used to investigate the impact of emotion on visual area V5/MT+. This area, traditionally believed to be involved in dorsal stream processing, has a number of characteristics similar to a ventral stream structure. It was discovered that V5/MT+ activity was modulated both by presence of perceptual motion and emotional content of an image. In addition, this region displayed patterns of functional connectivity with the amygdala that were significantly modulated by emotion.

Together, these results suggest that emotional information modulates neural processing within ventral sensory processing streams, but not dorsal processing streams. These findings are discussed with respect to current models of emotional and sensory processing, including amygdala connections to sensory cortices and emotional effects on cognition and behaviour.