Electronic Thesis and Dissertation Repository


Doctor of Philosophy




Charles Weijer


In the first half of this dissertation, I develop a heuristic methodology for analyzing scientific solutions to the problem of underdetermination. Heuristics are rough-and-ready procedures used by scientists to construct models, design experiments, interpret evidence, etc. But as powerful as they are, heuristics are also error-prone. Therefore, I argue that they key to prudently using a heuristic is the articulation of meta-heuristics---guidelines to the kinds of problems for which a heuristic is well- or ill-suited.

Given that heuristics will introduce certain errors into our scientific investigations, I emphasize the importance of a particular category of meta-heuristics involving the search for robust evidence. Robustness is understood to be the epistemic virtue bestowed by agreement amongst multiple modes of determination. The more modes we have at our disposal, and the more these confirm the same result, the more confident can we be that a result is not a mere artifact of some heuristic simplification. Through an analysis of case-studies in the philosophy of biology and clinical trials, I develop a principled method for modeling and evaluating heuristics and robustness claims in a qualitative problem space.

The second half of the dissertation deploys the heuristic methodology to address ethical and epistemological issues in the science of clinical trials. To that end, I develop a network model for the problem space of clinical research, capable of representing the various kinds of experiments, epistemic relationships, and ethical justifications intrinsic to the domain. I then apply this model to ongoing research with the antibacterial agent, moxifloxacin, for the treatment of tuberculosis, tracking its development from initially successful and promising in vitro and animal studies to its disappointing and discordant performance across five human efficacy trials. Given this failure to find a robust result with moxifloxacin across animal and human studies, what should researchers now do? While my final analysis of this case does not definitively answer that question, I demonstrate how my methodology, unlike a statistical meta-analysis, helps to clarify the directions for further research.

Certificate of Examination Final.pdf (138 kB)
Signed certificate of examination