Electronic Thesis and Dissertation Repository


Doctor of Philosophy


Electrical and Computer Engineering


Miriam A.M. Capretz


Facilitating decision-making in a vital discipline such as disaster management requires information gathering, sharing, and integration on a global scale and across governments, industries, communities, and academia. A large quantity of immensely heterogeneous disaster-related data is available; however, current data management solutions offer few or no integration capabilities and limited potential for collaboration. Moreover, recent advances in cloud computing, Big Data, and NoSQL have opened the door for new solutions in disaster data management.

In this thesis, a Knowledge as a Service (KaaS) framework is proposed for disaster cloud data management (Disaster-CDM) with the objectives of 1) facilitating information gathering and sharing, 2) storing large amounts of disaster-related data from diverse sources, and 3) facilitating search and supporting interoperability and integration. Data are stored in a cloud environment taking advantage of NoSQL data stores. The proposed framework is generic, but this thesis focuses on the disaster management domain and data formats commonly present in that domain, i.e., file-style formats such as PDF, text, MS Office files, and images. The framework component responsible for addressing simulation models is SimOnto. SimOnto, as proposed in this work, transforms domain simulation models into an ontology-based representation with the goal of facilitating integration with other data sources, supporting simulation model querying, and enabling rule and constraint validation.

Two case studies presented in this thesis illustrate the use of Disaster-CDM on the data collected during the Disaster Response Network Enabled Platform (DR-NEP) project. The first case study demonstrates Disaster-CDM integration capabilities by full-text search and querying services. In contrast to direct full-text search, Disaster-CDM full-text search also includes simulation model files as well as text contained in image files. Moreover, Disaster-CDM provides querying capabilities and this case study demonstrates how file-style data can be queried by taking advantage of a NoSQL document data store.

The second case study focuses on simulation models and uses SimOnto to transform proprietary simulation models into ontology-based models which are then stored in a graph database. This case study demonstrates Disaster-CDM benefits by showing how simulation models can be queried and how model compliance with rules and constraints can be validated.