Electronic Thesis and Dissertation Repository


Master of Engineering Science


Mechanical and Materials Engineering


Dr. Michael Naish


For many procedures, open surgery is being replaced with minimally invasive surgical (MIS) techniques. The advantages of MIS include reduced operative trauma and fewer complications leading to faster patient recovery, better cosmetic results and shorter hospital stays.

As the demand for MIS procedures increases, effective surgical training tools must be developed to improve procedure efficiency and patient safety. Motion tracking of laparoscopic instruments can provide objective skills assessment for novices and experienced users. The most common approaches to noncontact motion capture are optical and electromagnetic (EM) tracking systems, though each approach has operational limitations. Optical trackers are prone to occlusion and the performance of EM trackers degrades in the presence of magnetic and ferromagnetic material. The cost of these systems also limits their availability for surgical training and clinical environments.

This thesis describes the development and validation of a novel, noncontact laparoscopic tracking system as an inexpensive alternative to current technology. This system is based on the fusion of inertial, magnetic and distance sensing to generate real-time, 6-DOF pose data. Orientation is estimated using a Kalman-filtered attitude-heading reference system (AHRS) and restricted motion at the trocar provides a datum from which position information can be recovered.

The Inertial and Range-Enhanced Surgical (IRES) Tracker was prototyped, then validated using a MIS training box and by comparison to an EM tracking system. Results of IRES tracker testing showed similar performance to an EM tracker with position error as low as 1.25 mm RMS and orientation error <0.58 degrees RMS along each axis. The IRES tracker also displayed greater precision and superior magnetic interference rejection capabilities. At a fraction of the cost of current laparoscopic tracking methods, the IRES tracking system would provide an excellent alternative for use in surgical training and skills assessment.