Date of Award


Degree Type


Degree Name

Master of Engineering Science


Civil and Environmental Engineering


Dr. Denis O’Carroll


Nanomaterials possess unique physical, electrical and chemical properties which make them attractive for use in a wide range of applications. Through their use and eventual disposal, nanomaterials may ultimately be released into the subsurface environment and previous studies show that nanomaterials may pose a hazard to health. This study investigates the mobility of one important nanomaterial (multi-walled carbon nanotubes or MWNTs) through porous media. Particular focus is placed on the impact of varying mean collector grain size on MWNT retention. Results from one dimensional column experiments conducted under various physical and chemical conditions coupled with results of numerical modeling assess the suitability of traditional transport models to predict MWNT mobility. MWNTs were found to be mobile though porous media ranging from fine sand to silt. Findings suggest that a dual deposition model coupled with site blocking greatly improves model fits compared to traditional colloid filtration theory.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.