Bone and Joint Institute

Hip capsular strain varies between ligaments dependent on both hip position- and applied rotational force

Document Type


Publication Date



Knee Surgery, Sports Traumatology, Arthroscopy





First Page


Last Page


URL with Digital Object Identifier



© 2020, European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA). Purpose: To noninvasively characterize the ligament strain in the hip capsule using a novel CT-based imaging technique. Methods: The superior iliofemoral ligament (SIFL), inferior iliofemoral ligament (IIFL), ischiofemoral ligament (IFL) and pubofemoral ligament (PFL) were identified and beaded in seven cadavers. Specimens were mounted on a joint motion simulator within an O-arm CT scanner in − 15°, 0°, 30°, 60°, and 90° of flexion. 3 Nm of internal rotation (IR) and external rotation (ER) were applied and CT scans obtained. Strains were calculated by comparing bead separation in loaded and unloaded conditions. Repeated-measures ANOVA was used to evaluate differences in strain within ligaments between hip positions. Results: For the SIFL, strain significantly decreased in IR at 30° (p = 0.045) and 60° (p = 0.043) versus 0°. For ER, there were no significant position-specific changes in strain (n.s.). For the IIFL, strain decreased in IR and increased in ER with no significant position-specific differences. For the IFL, strain increased with IR and decreased with ER with no significant position-specific differences. Finally, in the PFL there was a significant flexion angle-by-load interaction (p ' 0.001; ES = 0.566), with peak strains noted at 60˚, however pair-wise comparisons failed to identify significant differences between positions (n.s.). Strain decreased in ER, with no significant position-specific differences. Conclusion: The SIFL and IIFL limit hip external rotation with greater effect in higher flexion angles, while the IFL and PFL limit hip internal rotation. Following hip arthroscopy, consideration should be given to restricting external rotation as traditional capsulotomies cause injury to the SIFL and IIFL.

Find in your library