Bone and Joint Institute

Extracellular nucleotides enhance agonist potency at the parathyroid hormone 1 receptor

Document Type


Publication Date



Cellular Signalling



First Page


Last Page


URL with Digital Object Identifier



© 2018 Elsevier Inc. Parathyroid hormone (PTH) activates the PTH/PTH-related peptide receptor (PTH1R) on osteoblasts and other target cells. Mechanical stimulation of cells, including osteoblasts, causes release of nucleotides such as ATP into the extracellular fluid. In addition to its role as an energy source, ATP serves as an agonist at P2 receptors and an allosteric regulator of many proteins. We investigated the effects of concentrations of extracellular ATP, comparable to those that activate low affinity P2X7 receptors, on PTH1R signaling. Cyclic AMP levels were monitored in real-time using a bioluminescence reporter and β-arrestin recruitment to PTH1R was followed using a complementation-based luminescence assay. ATP markedly enhanced cyclic AMP and β-arrestin signaling as well as downstream activation of CREB. CMP – a nucleotide that lacks a high energy bond and does not activate P2 receptors – mimicked this effect of ATP. Moreover, potentiation was not inhibited by P2 receptor antagonists, including a specific blocker of P2X7. Thus, nucleotide-induced potentiation of signaling pathways was independent of P2 receptor signaling. ATP and CMP reduced the concentration of PTH (1–34) required to produce a half-maximal cyclic AMP or β-arrestin response, with no evident change in maximal receptor activity. Increased potency was similarly apparent with PTH1R agonists PTH (1–14) and PTH-related peptide (1–34). These observations suggest that extracellular nucleotides increase agonist affinity, efficacy or both, and are consistent with modulation of signaling at the level of the receptor or a closely associated protein. Taken together, our findings establish that ATP enhances PTH1R signaling through a heretofore unrecognized allosteric mechanism.

Find in your library