Bone and Joint Institute

Title

Dystrophic calcification and heterotopic ossification in fibrocartilaginous tissues of the spine in diffuse idiopathic skeletal hyperostosis (DISH)

Document Type

Article

Publication Date

12-1-2020

Journal

Bone Research

Volume

8

Issue

1

URL with Digital Object Identifier

10.1038/s41413-020-0091-6

Abstract

© 2020, The Author(s). Diffuse idiopathic skeletal hyperostosis (DISH) is a prevalent noninflammatory spondyloarthropathy characterized by ectopic mineral formation along the anterolateral aspect of the vertebral column, yet little is known about its underlying pathogenesis. Our objective was to evaluate the histopathological features and composition of ectopic mineral within spinal tissues affected by DISH in humans. Thoracic spine segments from six embalmed cadaveric donors (one female and five males; median age 82 years) meeting the radiographic diagnostic criteria for DISH were evaluated using radiological, histological, and physical analyses. Overall, the histological features of ectopic mineralization at individual motion segments were heterogeneous, including regions of heterotopic ossification and dystrophic calcification. Heterotopic ossifications were characterized by woven and lamellar bone, multifocal areas of metaplastic cartilage, and bony bridges along the anterior aspect of the intervertebral disc space. Dystrophic calcifications were characterized by an amorphous appearance, a high content of calcium and phosphorus, an X-ray diffraction pattern matching that of hydroxyapatite, and radiodensities exceeding that of cortical bone. Dystrophic calcifications were found within the anterior longitudinal ligament and annulus fibrosus in motion segments both meeting and not meeting the radiographic criteria for DISH. In summary, our findings indicate that in DISH, ectopic mineral forms along the anterior aspect of the spine by both heterotopic ossification and dystrophic calcification of fibrocartilaginous tissues. Although both types of ectopic mineralization are captured by current radiographic criteria for DISH, dystrophic calcification may reflect a distinct disease process or an early stage in the pathogenesis of DISH.

This document is currently not available here.

Share

COinS