Document Type


Publication Date



Journal of magnetic resonance imaging : JMRI





First Page


Last Page


URL with Digital Object Identifier

doi: 10.1002/jmri.24526


PURPOSE: To validate a fully automated adipose segmentation method with magnetic resonance imaging (MRI) fat fraction abdominal imaging. We hypothesized that this method is suitable for segmentation of subcutaneous adipose tissue (SAT) and intra-abdominal adipose tissue (IAAT) in a wide population range, easy to use, works with a variety of hardware setups, and is highly repeatable.

MATERIALS AND METHODS: Analysis was performed comparing precision and analysis time of manual and automated segmentation of single-slice imaging, and volumetric imaging (78-88 slices). Volumetric and single-slice data were acquired in a variety of cohorts (body mass index [BMI] 15.6-41.76) including healthy adult volunteers, adolescent volunteers, and subjects with nonalcoholic fatty liver disease and lipodystrophies. A subset of healthy volunteers was analyzed for repeatability in the measurements.

RESULTS: The fully automated segmentation was found to have excellent agreement with manual segmentation with no substantial bias across all study cohorts. Repeatability tests showed a mean coefficient of variation of 1.2 ± 0.6% for SAT, and 2.7 ± 2.2% for IAAT. Analysis with automated segmentation was rapid, requiring 2 seconds per slice compared with 8 minutes per slice with manual segmentation.

CONCLUSION: We demonstrate the ability to accurately and rapidly segment regional adipose tissue using fat fraction maps across a wide population range, with varying hardware setups and acquisition methods. J. Magn. Reson. Imaging 2015;41:233-241. © 2014 Wiley Periodicals, Inc.

Find in your library