Anatomy and Cell Biology Publications

Document Type

Article

Publication Date

11-11-2015

Journal

JOURNAL OF NEUROSCIENCE

Volume

35

Issue

45

First Page

15157

Last Page

15169

URL with Digital Object Identifier

10.1523/JNEUROSCI.4081-14.2015

Abstract

In Alzheimer's disease, accumulation of soluble oligomers of beta-amyloid peptide is known to be highly toxic, causing disturbances in synaptic activity and neuronal death. Multiple studies relate these effects to increased oxidative stress and aberrant activity of calcium-permeable cation channels leading to calcium imbalance. The transient receptor potential melastatin 2 (TRPM2) channel, a Ca2+-permeable nonselective cation channel activated by oxidative stress, has been implicated in neurodegenerative diseases, and more recently in amyloid-induced toxicity. Here we show that the function of TRPM2 is augmented by treatment of cultured neurons with beta-amyloid oligomers. Aged APP/PS1 Alzheimer's mouse model showed increased levels of endoplasmic reticulum stress markers, protein disulfide isomerase and phosphorylated eukaryotic initiation factor 2 alpha, as well as decreased levels of the presynaptic marker synaptophysin. Elimination of TRPM2 in APP/PS1 mice corrected these abnormal responses without affecting plaque burden. These effects of TRPM2 seem to be selective for beta-amyloid toxicity, as ER stress responses to thapsigargin or tunicamycin in TRPM2(-/-) neurons was identical to that of wild-type neurons. Moreover, reduced microglial activation was observed in TRPM2(-/-)/APP/PS1 hippocampus compared with APP/PS1 mice. In addition, age-dependent spatial memory deficits in APP/PS1 mice were reversed in TRPM2(-/-)/APP/PS1 mice. These results reveal the importance of TRPM2 for beta-amyloid neuronal toxicity, suggesting that TRPM2 activity could be potentially targeted to improve outcomes in Alzheimer's disease.

Find in your library

Share

COinS