Microbiology & Immunology Publications

Document Type

Article

Publication Date

11-2014

Journal

PLoS One

Volume

9

Issue

11

First Page

113404

URL with Digital Object Identifier

doi: 10.1371/journal.pone.0113404

Abstract

Bdellovibrio bacteriovorus, as an obligate predator of Gram-negative bacteria, requires contact with the surface of a prey cell in order to initiate the life cycle. After attachment, the predator penetrates the prey cell outer membrane and enters the periplasmic space. Attack phase cells of B. bacteriovorus have polar Type IV pili that are required for predation. In other bacteria, these pili have the ability to extend and retract via the PilT protein. B. bacteriovorus has two pilT genes, pilT1 and pilT2, that have been implicated in the invasion process. Markerless in-frame deletion mutants were constructed in a prey-independent mutant to assess the role of PilT1 and PilT2 in the life cycle. When predation was assessed using liquid cocultures, all mutants produced bdelloplasts of Escherichia coli. These results demonstrated that PilT1 and PilT2 are not required for invasion of prey cells. Predation of the mutants on biofilms of E. coli was also assessed. Wild type B. bacteriovorus 109JA and the pilT1 mutant decreased the mass of the biofilm to 35.4% and 27.9% respectively. The pilT1pilT2 mutant was able to prey on the biofilm, albeit less efficiently with 50.2% of the biofilm remaining. The pilT2 mutant was unable to disrupt the biofilm, leaving 92.5% of the original biofilm after predation. The lack of PilT2 function may impede the ability of B. bacteriovorus to move in the extracellular polymeric matrix and find a prey cell. The role of Type IV pili in the life cycle of B. bacteriovorus is thus for initial recognition of and attachment to a prey cell in liquid cocultures, and possibly for movement within the matrix of a biofilm.

Notes

PMID: 25409535

Find in your library

Share

COinS