Microbiology & Immunology Publications

Document Type

Article

Publication Date

2003

Journal

Cell Mol Biol (Noisy-le-grand)

Volume

2

Issue

49

First Page

159

Last Page

169

Abstract

The present study was undertaken to analyze the regulatory T cells generated in response to class I derived self-I-A beta(g7) (54-76) peptide. It was observed T cells from young unprimed type 1 diabetes (T1D) prone NOD mice did not respond to self-I-A beta(g7) (54-76) peptide although T cells from primed young NOD mice showed a strong response. T cells from young unprimed BALB/c mice responded to self-I-A beta(d) (62-78) peptide. However, a breakdown of tolerance to these peptides was observed with age in both the strains. Culture supernatant from I-A beta(g7) (54-76) peptide-primed cells secreted large amounts of TGF-beta and inhibited T cell responses in allogeneic-MLR. Further, I-A beta(g7) (54-76) peptide specific T cell lines from young (I-A.Y) and diabetic (I-A.D) NOD mice were established. I-A.Y secreted IL-4, TGF-beta and IL-10 while I-A.D T cell line secreted IL-10 and IFN-gamma. We found that I-A.D T cell line induced diabetes when transferred in NOD/SCID mice but I-A.Y T cell line did not induce disease. These results show that immunization of NOD mice with I-A beta(g7) (54-76) peptide at a younger age induces a regulatory T cell response suggesting that correcting the defects in immunoregulatory mechanisms using self-MHC peptides may be one of the approaches to prevent autoimmune diseases like T1D.

Citation of this paper:

Mukherjee, R, Chaturvedi P, Agrawal B, Singh B. Regulation of type 1 diabetes by a self-MHC class II peptide: Role of Transforming Growth Factor (TGF-b). Cell Mol. Biol. 2003; 49:159-69.

Find in your library

Share

COinS