Electronic Thesis and Dissertation Repository

Degree

Master of Engineering Science

Program

Biomedical Engineering

Supervisor

Ferreira, Louis

2nd Supervisor

Johnson, Jim

Co-Supervisor

Abstract

Glenoid reaming is a technically challenging step during total shoulder arthroplasty surgery that may be improved through frequent practice and exposure to simulation training. At our institution, a vibration haptic glenoid reaming simulator is being developed that simulates the vibrations felt during glenoid reaming. This thesis presents the development of a force-based reamer vector measurement system that allows the simulator to measure the user’s net applied force and reamer angle of approach. This capability allows for the simulation of eccentric reaming maneuvers commonly used to adjust the glenoid orientation. The system error was characterized and evaluated using a robot to operate a surgical reaming tool. Finally, a study was performed that assessed the ability of surgeons to correct glenoid retroversion while using the haptic vibration simulator. Overall, the surgeons were able to correct glenoid orientation within 1 degree of the target orientation, according to the simulator’s reaming vector measurement system.

Share

COinS