Electronic Thesis and Dissertation Repository


Doctor of Philosophy


Electrical and Computer Engineering


Dr. Raveendra Rao, and Dr. Abdallah Shami


Practical models for the subnetworks of smart grid are presented and analyzed. Critical packet-delay bounds for these subnetworks are determined, with the overall objective of identifying parameters that would help in the design of smart grid with least end-to-end delay.

A single-server non-preemptive queueing model with prioritized critical packets is presented for Home Area Network (HAN). Closed-form expressions for critical packet delay are derived and illustrated as a function of: i) critical packet arrival rate, ii) service rate, iii) utilization factor, and iv) rate of arrival of non-critical packets. Next, wireless HANs using FDMA and TDMA are presented. Upper and lower bounds on critical packet delay are derived in closed-form as functions of: i) average of signal-to interference-plus-noise ratio, ii) random channel scale, iii) transmitted power strength, iv) received power strength, v) number of EDs, vi) critical packet size, vii) number of channels, viii) path loss component, ix) distances between electrical devices and mesh client, x) channel interference range, xi) channel capacity, xii) bandwidth of the channel, and xiii) number of time/frequency slots. Analytical and simulation results show that critical packet delay is smaller for TDMA compared to FDMA. Lastly, an Intelligent

Distributed Channel-Aware Medium Access Control (IDCA-MAC) protocol for wireless HAN using Distributed Coordination Function (DCF) is presented. The protocol eliminates collision and employs Multiple Input Multiple Output (MIMO) system to enhance system performance. Simulation results show that critical packet delay can be reduced by nearly 20% using MA-Aware protocol compared to IDCA-MAC protocol. However, the latter is superior in terms throughput.

A wireless mesh backbone network model for Neighbourhood Area Network (NAN) is presented for forwarding critical packets received from HAN to an identified gateway. The routing suggested is based on selected shortest path using Voronoi tessellation. CSMA/CA and CDMA protocols are considered and closed{form upper and lower bounds on critical packet delay are derived and examined as functions of i) signal-to-noise ratio, ii) signal interference, iii) critical packet size, iv) number of channels, v) channel interference range, vi) path loss components, vii) channel bandwidth, and viii) distance between MRs. The results show that critical packet delay to gateway using CDMA is lower compared to CSMA/CA protocol.

A fiber optic Wide Area Network (WAN) is presented for transporting critical packets received from NAN to a control station. A Dynamic Fastest Routing Strategy (DFRS) algorithm is used for routing critical packets to control station. Closed-form expression for mean critical packet delay is derived and is examined as a function of: i) traffic intensity, ii) capacity of fiber links, iii) number of links, iv) variance of inter-arrival time, v) variance of service time, and vi) the latency of links. It is shown that delay of critical packets to control station meets acceptable standards set for smart grid.