Electronic Thesis and Dissertation Repository

Degree

Doctor of Philosophy

Program

Electrical and Computer Engineering

Supervisor(s)

Dr. Abdallah Shami, Dr. Serguei Primak

Abstract

Services providers (SPs) in the radio platform technology standard long term evolution (LTE) systems are enduring many challenges in order to accommodate the rapid expansion of mobile data usage. The modern technologies demonstrate new challenges to SPs, for example, reducing the cost of the capital and operating expenditures while supporting high data throughput per customer, extending battery life-per-charge of the cell phone devices, and supporting high mobility communications with fast and seamless handover (HO) networking architecture. In this thesis, a variety of optimized techniques aimed at providing innovative solutions for such challenges are explored. The thesis is divided into three parts. The first part outlines the benefits and challenges of deploying virtualized resource sharing concept. Wherein, SPs achieving a di erent schedulers policy are sharing evolved network B, allowing SPs to customize their e orts and provide service requirements; as a promising solution for reducing operational and capital expenditures, leading to potential energy savings, and supporting higher peak rates. The second part, formulates the optimized power allocation problem in a virtualized scheme in LTE uplink systems, aiming to extend the mobile devices’ battery utilization time per charge. While, the third part extrapolates a proposed hybrid-HO (HY-HO) technique, that can enhance the system performance in terms of latency and HO reliability at cell boundary for high mobility objects (up to 350 km/hr; wherein, HO will occur more frequent). The main contributions of this thesis are in designing optimal binary integer programmingbased and suboptimal heuristic (with complexity reduction) scheduling algorithms subject to exclusive and contiguous allocation, maximum transmission power, and rate constraints. Moreover, designing the HY-HO based on the combination of soft and hard HO was able to enhance the system performance in term of latency, interruption time and reliability during HO. The results prove that the proposed solutions e ectively contribute in addressing the challenges caused by the demand for high data rates and power transmission in mobile networks especially in virtualized resources sharing scenarios that can support high data rates with improving quality of services (QoSs).


Share

COinS