"Apodized-Aperture Pixel Design X-Ray Detector for Improvement of Detec" by Elina Ismailova
Electronic Thesis and Dissertation Repository

Degree

Master of Science

Program

Medical Biophysics

Supervisor

Dr Ian Cunningham

Abstract

The detective quantum efficiency (DQE) is a characteristic of x-ray imaging systems describing how well a system can produce high signal-to-noise ratio images compared to an ideal detector. In medical radiography, increases in DQE result directly in increases in image SNR for a given x-ray exposure, and improved SNR has been shown to improve breast cancer detection rates in screening programs. Typically, modern x-ray detectors have DQE values about 0.6 to 0.7 at low spatial frequencies and 0.2 to 0.3 or less at high spatial frequencies. We describe a method to improve the high frequency DQE by developing a novel apodized-aperture pixel (AAP) design that can be implemented with detectors having very small elements. We show theoretically that the high-frequency DQE can be doubled using this approach. Experimental validation shows an increase from 0.2 to 0.4 at the sampling cut-off frequency (2.5 cycles/mm) for a laboratory CMOS/CsI detector. It is predicted the high-frequency DQE of a Se-based detector for mammography could be increased from 0.35 to 0.7. Such increases would improve visualization of small objects and fine detail in x-ray imaging by a factor of two.

Share

COinS