Electronic Thesis and Dissertation Repository

Degree

Master of Engineering Science

Program

Electrical and Computer Engineering

Supervisor

Dr. Rajiv K. Varma

Abstract

About 45% applications from PV solar farm developers seeking connections to the distribution grids in Ontario were denied in 2011-13 as the short circuit current (SCC) capacity of several distribution substations had already been reached. PV solar system inverters typically contribute 1.2 p.u. to 1.8 p.u. fault current which was not considered acceptable by utility companies due to the need for very expensive protective breaker upgrades. Since then, this cause has become a major impediment in the growth of PV based renewable systems in Ontario.

A novel predictive technique has been patented in our research group for management of short circuit current contribution from PV inverters to ensure effective deployment of solar farms. This thesis deals with the real time testing and validation of a short circuit current (SCC) controller based on the above technique. With this SCC controller, the PV inverter can be shut off within 1-2 milliseconds from the initiation of any fault in the grid that can cause the short circuit current to exceed the rated current of the inverter. Therefore, the power system does not see any short circuit current contribution from the PV inverter and no expensive upgrades in protective breakers are required in the system.

The performance of the PV solar system with the short circuit current controller is simulated and tested using (i) industry grade electromagnetic transients software PSCAD/EMTDC (ii) real time simulation studies on the Real Time Digital Simulator (RTDS) (iii) physical implementation on dSPACE board to generate firing pulses for the inverter. The validation of controller is done on dSPACE board with actual PV inverter short circuit waveforms obtained from Southern California Edison Short Circuit Testing Lab. This novel technology is planned to be showcased on a physical 10 kW PV solar system in Bluewater Power Distribution Corporation, Sarnia, Ontario. This proposed technology is expected to remove the technical hurdles which caused the denials of connectivity to several PV solar farms, and effectively lead to greater connections of PV solar farms in Ontario and in similar jurisdictions, worldwide.

Share

COinS