Electronic Thesis and Dissertation Repository

Degree

Doctor of Philosophy

Program

Electrical and Computer Engineering

Supervisor

Dr. Tarlochan Singh Sidhu

Abstract

Power system operation has become increasingly complex due to high load growth and increasing market pressure. The occurrence of major blackouts in many power systems around the world has necessitated the use of synchrophasor based Wide Area Measurement Systems (WAMS) for grid monitoring. Synchrophasor technology is comparatively new in the area of power systems. Phasor measurement units (PMUs) and phasor data concentrators (PDCs) are new to the substations and control centers. Even though PMUs have been installed in many power grids, the number of installed PMUs is still low with respect to the number of buses or lines. Currently, WAMS systems face many challenges. This thesis is an attempt towards solving some of the technical problems faced by the WAMS systems. This thesis addresses four problems related to synchrophasor estimation, synchrophasor quality detection, synchrophasor communication and synchrophasor application.

In the first part, a synchrophasor estimation algorithm has been proposed. The proposed algorithm is simple, requires lesser computations, and satisfies all the steady state and dynamic performance criteria of the IEEE Standard C37.118.1-2011 and also suitable for protection applications. The proposed algorithm performs satisfactorily during system faults and it has lower response time during larger disturbances.

In the second part, areas of synchrophasor communication which can be improved by applying compressive sampling (CS) are identified. It is shown that CS can reduce bandwidth requirements for WAMS networks. It is also shown that CS can successfully reconstruct system dynamics at higher rates using synchrophasors reported at sub-Nyquist rate.

Many synchrophasor applications are not designed to use fault/switching transient synchrophasors. In this thesis, an algorithm has been proposed to detect fault/switching transient synchrophasors. The proposed algorithm works satisfactorily during smaller and larger step changes, oscillations and missing data.

Fault transient synchrophasors are not usable in WAMS applications as they represent a combination of fault and no-fault scenario. In the fourth part, two algorithms have been proposed to extract fault synchrophasor from fault transient synchrophasor in PDC. The proposed algorithms extract fault synchrophasors accurately in presence of noise, off-nominal frequencies, harmonics, and frequency estimation errors.

Share

COinS