"The Cost of Ethanol Synthesis During Recovery from Exhaustive Exercise" by Simon A. Bradford
Electronic Thesis and Dissertation Repository

Degree

Master of Science

Program

Biology

Supervisor

Dr. Louise Milligan

Abstract

Grass carp (Ctenopharyngodon idella) reduce white muscle glycogen (~14 µmol glucosyl units/g wet tissue) in response to exhaustive exercise. This reduction results in a small increase in muscle lactate (~9 µmol/g wet tissue) and a larger increase in muscle ethanol (~30 µmol/g wet tissue). Tissue-specific and whole-body measures of glycogen, ethanol and lactate confirm that ethanol is the major “anaerobic” glycolytic end-product. Additionally, while peak muscle and blood ethanol levels occur immediately post-exercise, the excretion of ethanol to the environment is delayed, occurring over a 30-minute period beginning ~105 minutes following exercise. As the total amount of ethanol synthesized in the white muscle does not account for that synthesized in the whole-body, it may be that the red muscle is also involved. The clearance and excretion of ethanol to the environment following exercise represents ~100% of the whole-body glycolytic pool used during exercise and therefore represents a significant carbon cost to the muscle’s glycolytic pool.

Share

COinS