Chemistry Publications

Document Type

Article

Publication Date

9-15-2014

Journal

Canadian Journal of Chemistry

Volume

93

Issue

2

First Page

207

Last Page

217

URL with Digital Object Identifier

doi:10.1139/cjc-2014-0265

Abstract

A highly cross-linked polystyrene resin bearing a reactive chlorostannane moiety 1 has been used to generate a variety of arylstannane radiopharmaceutical precursors for no-carrier-added radioiodination. The resins were characterized for their solvent compatibility and sensitivity to acid cleavage. Resin-supported arylstannanes synthesized via their aryl lithium analogues include 3- and 4-stannylbenzaldehydes, 3- and 4-stannylbenzoic acids, and 3- and 4-N-succinimidyl benzoates. A three-step route to the resin-supported stannylbenzoic acids 12a/b was developed through resin-supported benzaldehydes 11a/b. The aldehyde to acid conversion efficiency is >90%, and acid loading capacities of 0.66–0.94 mmol/g were obtained. Resin-supported N-succinimidyl benzoates 16a/b were prepared from the acid with 78%–84% conversion efficiency. Libraries of resin-supported benzamides 19a/b prepared from amine conjugation to corresponding benzoic acids or N-succinimidyl benzoates are described. A third approach describes the preparation of resin-supported benzamides via direct conjugation of the dilithio salt of the intact benzamide to the chlorostannane resin 1. Lastly, as proof-of-principle, a radiolabeling study with iodine-131 (131I) was performed with a resin-supported benzamide to afford the corresponding radioligand in moderate yields, and high radiochemical purity.

Notes

The full text document submitted does not include the figures and tables that are included with the original paper that was published. They were included in the "supplemental"section but are part of the main manuscript.


Find in your library

Share

COinS