Document Type

Article

Publication Date

3-28-2015

Journal

Microcirculation (New York, N.Y. : 1994)

URL with Digital Object Identifier

doi:10.1111/micc.12202

Abstract

OBJECTIVES: To quantify how incremental capillary perfusion loss, such as that seen in experimental models of sepsis, affects tissue oxygenation using a computation model of oxygen transport.

METHODS: A computational model was applied to capillary networks with dimensions 84x168x342 (NI) and 70x157x268 (NII) μm, reconstructed in vivo from rat skeletal muscle. Functional capillary density (FCD) loss was applied incrementally up to ~40% and combined with high tissue oxygen consumption to simulate severe sepsis.

RESULTS: A loss of ~40% FCD loss decreased median tissue PO2 to 22.9 and 20.1 mmHg in NI and NII compared to 28.1 and 27.5 mmHg under resting conditions. Increasing red blood cell supply rate (SR) to baseline levels returned tissue PO2 to within 5% of baseline. High consumption combined with a 40% FCD loss, resulted in tissue anoxia in both network volumes and median tissue PO2 of 11.5 and 8.9 mmHg in NI and NII respectively; median tissue PO2 was recovered to baseline levels by increasing total SR 3 - 4 fold.

CONCLUSIONS: These results suggest a substantial increase in total SR is required in order to compensate for impaired oxygen delivery as a result of loss of capillary perfusion and increased oxygen consumption during sepsis. This article is protected by copyright. All rights reserved.


Find in your library

Share

COinS