Title

Identification of a Novel Zn2+-binding Domain in the Autosomal Recessive Juvenile Parkinson-related E3 Ligase Parkin

Document Type

Article

Publication Date

5-29-2009

Journal

Journal of Biological Chemistry

Volume

284

Issue

22

First Page

14978

Last Page

14986

Abstract

Missense mutations in park2, encoding the parkin protein, account for approximately 50% of autosomal recessive juvenile Parkinson disease (ARJP) cases. Parkin belongs to the family of RBR (RING-between-RING) E3 ligases involved in the ubiquitin-mediated degradation and trafficking of proteins such as Pael-R and synphillin-1. The proposed architecture of parkin, based largely on sequence similarity studies, consists of N-terminal ubiquitin-like and C-terminal RBR domains. These domains are separated by a approximately 160-residue unique parkin sequence having no recognizable domain structure. We used limited proteolysis experiments on bacterially expressed and purified parkin to identify a new domain (RING0) within the unique parkin domain sequence. RING0 comprises two distinct, conserved cysteine-rich clusters between Cys(150)-Cys(169) and Cys(196)-His(215) consisting of CX(2)-(3)CX(11)CX(2)C and CX(4-6)CX(10-16)-CX(2)(H/C) motifs. The positions of the cysteine/histidine residues in this region bear similarity to parkin RING1 and RING2 domains, as well as other E3 ligase RING domains. However, in parkin a 26-residue linker region separates the motifs, which is not typical of other RING domain structures. Further, the RING0 domain includes all but one of the known ARJP mutation sites between the ubiquitin-like and RBR regions of parkin. Using electrospray ionization mass spectrometry and inductively coupled plasma-atomic emission spectrometry analysis, we determined that the RING0, RING1, IBR, and RING2 domains each bind two Zn(2+) ions, the first observation of an E3 ligase with the ability to bind eight metal ions. Removal of the zinc from parkin causes near complete unfolding of the protein, an observation that rationalizes cysteine-based ARJP mutations found throughout parkin, including RING0 (C212Y) that form cellular inclusions and/or are defective for ubiquitination likely because of poor zinc binding and misfolding. The identification of the RING0 domain in parkin provides a new overall domain structure for the protein that will be important in assessing the roles of ARJP mutations and designing experiments aimed at understanding the disease.

Notes

Published in: J. Biol. Chem. 2009, 284: 14978-14986. doi: 10.1074/jbc.M808700200