Biochemistry Publications
Document Type
Article
Publication Date
Winter 1-13-2014
Journal
F1000Research
Volume
3
First Page
8
URL with Digital Object Identifier
http://f1000research.com/articles/3-8/v1
Abstract
Interpretation of variants present in complete genomes or exomes reveals numerous sequence changes, only a fraction of which are likely to be pathogenic. Mutations have been traditionally inferred from allele frequencies and inheritance patterns in such data. Variants predicted to alter mRNA splicing can be validated by manual inspection of transcriptome sequencing data, however this approach is intractable for large datasets. These abnormal mRNA splicing patterns are characterized by reads demonstrating either exon skipping, cryptic splice site use, and high levels of intron inclusion, or combinations of these properties. We present, Veridical, an in silico method for the automatic validation of DNA sequencing variants that alter mRNA splicing. Veridical performs statistically valid comparisons of the normalized read counts of abnormal RNA species in mutant versus non-mutant tissues. This leverages large numbers of control samples to corroborate the consequences of predicted splicing variants in complete genomes and exomes.
Citation of this paper:
Viner C, Dorman SN, Shirley BC and Rogan PK (2014) Validation of predicted mRNA splicing mutations using high-throughput transcriptome data [v1; ref status: indexed, http://f1000r.es/2no] F1000Research 2014, 3:8 (doi: 10.12688/f1000research.3-8.v1)
Notes
doi: 10.12688/f1000research.3-8.v1