Assessing the Association of the HNF1A G319S Variant with C-reactive Protein in Aboriginal Canadians: A Population-based Epidemiological Study

Document Type


Publication Date



Cardiovascular Diabetology





URL with Digital Object Identifier



BACKGROUND: C-reactive protein (CRP), a biomarker of inflammation, has been associated with increased risk of developing cardiovascular disease. Common variants of the hepatocyte nuclear factor 1A (HNF1A) gene encoding HNF-1alpha have been associated with plasma CRP in predominantly European Caucasian samples. HNF1A might therefore have an impact on vascular disease and diabetes risk that is mediated by CRP. In an Aboriginal Canadian population, a private polymorphism, HNF1A G319S, was associated with increased prevalence of type 2 diabetes. However, it has not been investigated whether this association is mediated by CRP. We aimed to investigate whether CRP was mediating the association between HNF1A G319S and type 2 diabetes in an Aboriginal Canadian population with a high prevalence of diabetes.

METHODS: A total of 718 individuals who participated in a diabetes prevalence and risk factor survey were included in the current analysis. Participants were genotyped for HNF1A G319S. Fasting plasma samples were analyzed for CRP. Fasting plasma glucose and a 75-g oral glucose tolerance test were obtained to determine type 2 diabetes. RESULTS: The prevalence rate of type 2 diabetes was 17.4% (125/718) using the 1999 World Health Organization definition and was higher among S319 allele carriers compared to G/G homozygotes (p<0.0001). Among participants without type 2 diabetes, CRP levels were higher among G/G homozygotes (1.64 [95% confidence interval 1.35-2.00] mg/l) than in S319 carriers (1.26 [1.04-1.54] mg/l) (p=0.009) after adjustment for age, sex, 2-h post-load glucose, waist circumference, and serum amyloid A. CRP levels were elevated among those with diabetes after similar adjustment (4.39 [95% confidence interval 3.09-6.23] and 4.44 [3.13-6.30] mg/L, respectively), and no significant difference in CRP was observed between S319 carriers and non-carriers (p=0.95).

CONCLUSIONS: CRP levels were lower in S319 allele carriers of the HNF1A gene compared to non-carriers among individuals without diabetes, but this difference was not present among those with diabetes, who uniformly had elevated CRP levels. Therefore, while HNF1A appears to influence CRP concentrations in the non-diabetic state, chronic elevation of CRP is unlikely mediating the association between the HNF1A polymorphism and the high prevalence of type 2 diabetes in this Aboriginal population.