Physiology and Pharmacology Publications

Title

Proteinases as hormones: Targets and mechanisms for proteolytic signaling

Document Type

Conference Proceeding

Publication Date

8-1-2008

Journal

Biological Chemistry

Volume

389

Issue

8

First Page

971

Last Page

982

URL with Digital Object Identifier

10.1515/BC.2008.120

Abstract

Proteinases, such as kallikrein-related peptidases, trypsin and thrombin, can play hormone-like 'messenger' roles in vivo. They can regulate cell signaling by cleaving and activating a novel family of G-protein-coupled proteinase-activated receptors (PARs 1-4) by unmasking a tethered receptor-triggering ligand. Short synthetic PAR-derived peptide sequences (PAR-APs) can selectively activate PARs 1, 2 and 4, causing physiological responses in vitro and in vivo. Using the PAR-APs to activate the receptors in vivo, it has been found that PARs, like hormone receptors, can affect the vascular, renal, respiratory, gastrointestinal, musculoskeletal and nervous systems (central and peripheral). PARs trigger responses ranging from vasodilatation to intestinal inflammation, increased cytokine production and increased nociception. These PAR-stimulated responses have been implicated in various disease states, including cancer, atherosclerosis, asthma, arthritis, colitis and Alzheimer's disease. In addition to targeting the PARs, proteinases can also cause hormone-like effects by other signaling mechanisms that may be as important as the activation of PARs. Thus, the PARs themselves, their activating serine proteinases and their signaling pathways can be considered as attractive targets for therapeutic drug development. Further, proteinases can be considered as physiologically relevant 'hormone-like' messengers that can convey signals locally or systemically either via PARs or by other mechanisms. © 2008 by Walter de Gruyter.

This document is currently not available here.

Share

COinS