Paediatrics Publications

Document Type


Publication Date



Clinical Journal of the American Society of Nephrology





First Page


Last Page


URL with Digital Object Identifier



Background and objectives The diagnostic accuracy of cystatin C estimated GFR (eGFR) by various cystatin C equations have varied in different studies. We hypothesized that the GFR level of enrolled patients affects the diagnostic accuracy of a cystatin C equation. Design, setting, participants, & measurements We analyzed 240 consecutively enrolled children at a single Canadian center in a prospective and cross-sectional study. Cystatin C was analyzed with nephelometry, and cystatin C eGFR was estimated by the equations validated in children. GFR was measured by technetium- 99m-diethylene-triamine penta-acetic acid (99mTc DTPA). Results We compared various cystatin C equations across GFR strata <60, <90, ≥135, and ≥150 ml/min per 1.73 m2 for an accurate prediction and appropriate classification of the measured GFR. The CKiD, Zappitelli- CysEq, and Zappitelli-CysCrEq equations had a higher accuracy, estimated by eGFR values within 10% and 30% of the respective 99mTc DTPA, in the GFR categories <60 and <90 ml/min per 1.73 m2, whereas the Bökenkamp, Bouvet, and Filler equations had a greater accuracy in the GFR categories ≥135 and ≥150 ml/min per 1.73 m2. The Bouvet, CKiD, Filler, Zappitelli-CysEq, and Zappitelli-CysCrEq equations had a greater sensitivity to classify GFR <60 and <90 ml/min per 1.73 m2, whereas the Bökenkamp equation had a higher sensitivity for GFR ≥135 and ≥150 ml/min per 1.73 m2. Conclusions The diagnostic accuracy of various cystatin C equations varies with GFR. This issue needs consideration while applying these equations in clinical practice and for further research on eGFR equations. © 2011 by the American Society of Nephrology.