Electronic Thesis and Dissertation Repository

Degree

Doctor of Philosophy

Program

Electrical and Computer Engineering

Supervisor

Abdallah Shami

Abstract

The evolving of cellular networks within the last decade continues to focus on delivering a robust and reliable means to cope with the increasing number of users and demanded capacity. Recent advancements of cellular networks such as Long-Term Evolution (LTE) and LTE-advanced offer a remarkable high bandwidth connectivity delivered to the users. Signalling overhead is one of the vital issues that impact the cellular behavior. Causing a significant load in the core network hence effecting the cellular network reliability. Moreover, the signaling overhead decreases the Quality of Experience (QoE) of users. The first topic of the thesis attempts to reduce the signaling overhead by developing intelligent location management techniques that minimize paging and Tracking Area Update (TAU) signals. Consequently, the corresponding optimization problems are formulated. Furthermore, several techniques and heuristic algorithms are implemented to solve the formulated problems. Additionally, network scalability has become a challenging aspect that has been hindered by the current network architecture. As a result, Cloud Radio Access Networks (C-RANs) have been introduced as a new trend in wireless technologies to address this challenge. C-RAN architecture consists of: Remote Radio Head (RRH), Baseband Unit (BBU), and the optical network connecting them. However, RRH-to-BBU resource allocation can cause a significant downgrade in efficiency, particularly the allocation of the computational resources in the BBU pool to densely deployed small cells. This causes a vast increase in the power consumption and wasteful resources. Therefore, the second topic of the thesis discusses C-RAN infrastructure, particularly where a pool of BBUs are gathered to process the computational resources. We argue that there is a need of optimizing the processing capacity in order to minimize the power consumption and increase the overall system efficiency. Consequently, the optimal allocation of computational resources between the RRHs and BBUs is modeled. Furthermore, in order to get an optimal RRH-to-BBU allocation, it is essential to have an optimal physical resource allocation for users to determine the required computational resources. For this purpose, an optimization problem that models the assignment of resources at these two levels (from physical resources to users and from RRHs to BBUs) is formulated.

Available for download on Friday, May 31, 2019

Share

COinS