Electronic Thesis and Dissertation Repository


Doctor of Philosophy


Computer Science


Prof. Michael Bauer


The goal of an intelligent transportation system is to increase safety, convenience and efficiency in driving. Besides these obvious advantages, the integration of intelligent features and autonomous functionalities on vehicles will lead to major economic benefits from reduced fuel consumption to efficient exploitation of the road network.

While giving this information to the driver can be useful, there is also the possibility of overloading the driver with too much information. Existing vehicles already have some mechanisms to take certain actions if the driver fails to act. Future vehicles will need more complex decision making modules which receive the raw data from all available sources, process this data and inform the driver about the existing or impending situations and suggest, or even take actions.

Intelligent vehicles can take advantage of using different sources of data to provide more reliable and more accurate information about driving situations and build a safer driving environment. I have identified five general sources of data which is available for intelligent vehicles: the vehicle itself, cameras on the vehicle, communication between the vehicle and other vehicles, communications between vehicles and roadside units and the driver information. But facing this huge amount of data requires a decision making module to collect this data and provide the best reaction based on the situation.

In this thesis, I present a data fusion approach for decision making in vehicles in which a decision making module collects data from the available sources of information and analyses this data and provides the driver with helpful information such as traffic congestion, emergency messages, etc.

The proposed approach uses agents to collect the data and the agents cooperate using a black board method to provide the necessary data for the decision making system. The Decision making system benefits from this data and provides the intelligent vehicle applications with the best action(s) to be taken.

Overall, the results show that using this data fusion approach for making decision in vehicles shows great potential for improving performance of vehicular systems by reducing travel time and wait time and providing more accurate information about the surrounding environment for vehicles. In addition, the safety of vehicles will increase since the vehicles will be informed about the hazard situations.