Electrical and Computer Engineering Publications

Document Type


Publication Date

Winter 2-1-2022




Mechanism and Machine Theory

URL with Digital Object Identifier



In this paper, we aim to use a continuous formulation to efficiently calculate the well-known wrench-based grasp metric proposed by Ferrari and Canny which is the minimum distance from the wrench space origin to the boundary of the grasp wrench space. Considering the L∞" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 16.200000762939453px; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;"> metric and the nonlinear friction cone model, the challenge of calculating this metric is to determine the boundary of the grasp wrench space. Instead of relying on convex hull construction, we propose to formulate the boundary of the grasp wrench space as continuous functions. By doing so, the problem of grasp quality calculation can be efficiently solved as typical least-square problems and it can be easily implemented by employing off-the-shelf optimization algorithms. Numerical tests will demonstrate the advantages of the proposed formulation compared to the conventional convex hull-based methods.

Find in your library