Date of Award


Degree Type


Degree Name

Doctor of Philosophy


Quantum theory has played a significant role in modern philosophy both as a source of metaphysical ideas and as an important example of a 'scientific revolution'. In spite of the sixty or so years that have elapsed since its invention, a long lasting controversy concerning the interpretation and meaning of quantum theory prevails. Almost all authors, however, seem to agree on one major point, namely, that there could be no interpretation of this theory which is both realistic and local.;The purpose of this thesis is to demonstrate that this premiss is false and that a realistic, local and deterministic interpretation of quantum theory (at least of part of it) does exist, provided that we extend the classical concept of probability.;In order to establish this a 'quasi classical' probability theory is developed based on some non Lebesgue measurable 'events', which is then applied to account for spin-statistics. Finally I note how this model reflects on the problems of physical realism, locality, the status of probability theory and the philosophical foundations of mathematics.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.