Civil and Environmental Engineering Publications

Document Type


Publication Date



Journal of Constructional Steel Research



First Page


URL with Digital Object Identifier

Last Page


Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.


Steel structures dissipate the seismic energy through steel yielding, which results in residual deformations. Although conventional earthquake-resisting structural systems provide adequate seismic safety, they experience significant structural damage when exposed to strong ground shaking. Seismic residual drifts complicate the repair of damaged structures or render the structure as irreparable. Therefore, systems that can minimize the seismic residual deformations are needed. Superelastic shape memory alloys (SMAs) have the ability to undergo large deformations and recover all plastic deformations upon unloading. Their utilization in steel structures can significantly reduce seismic residual deformations, which will facilitate post-seismic retrofitting. Although the literature provides few research data on using SMA in steel beam-column connections, previous research did not address their optimum use. This paper identifies the required locations of SMA connections in a typical steel moment resisting frame to enhance its seismic performance in terms of maximum inter-storey drift, residual deformations, and damage scheme.

Find in your library