Chemistry Publications

Site-Directed Mutagenesis Combined with Oxidative Methionine Labeling for Probing Structural Transitions of a Membrane Protein by Mass Spectrometry

Document Type

Article

Publication Date

11-2010

Journal

Journal of the American Society for Mass Spectrometry

Volume

21

Issue

11

First Page

1947

Last Page

1956

URL with Digital Object Identifier

http://dx.doi.org/10.1016/j.jasms.2010.08.004

Abstract

Exposure of the membrane protein bacteriorhodopsin (BR) to SDS induces partial breakdown of the native conformation. The exact structural properties of this SDS state remain a matter of debate, despite its widespread use in BR folding experiments. The current work employs hydroxyl radical (·OH) labeling in conjunction with mass spectrometry (MS)-based peptide mapping for probing the solvent accessibility of individual BR segments in the presence of SDS. Previous work revealed methionine sulfoxide formation to be the dominant oxidative pathway. Those data suggested extensive unfolding of helices A and D in SDS. Unfortunately, the lack of Met residues in helices C and F implies that no direct information on the behavior of the latter two elements could be obtained. Here, we address this problem by employing two variants with additional Met residues, L93M (helix C) and V179M (helix F). The oxidation behavior of the resulting 11 methionines can be grouped into three categories: (1) extensively labeled both in native BR and in SDS (loop residues M32, M68, and M163); (2) protected in the native state but not in SDS (M20, M118); (3) always protected (M56, M60, M93, M145, M179, M209). These data show that a solvent-inaccessible core is retained in SDS. This core consists of partially intact helices B, C, E, F, and G. The termini of these helices are highly dynamic and/or unraveled, particularly on the cytoplasmic side. Overall, this work demonstrates how the use of engineered ·OH labeling sites can provide insights into structural properties of membrane proteins.

Find in your library

Share

COinS