6-15-2014

Metabolic suppression in mammalian hibernation: the role of mitochondria.

James F Staples

Follow this and additional works at: https://ir.lib.uwo.ca/biologypub

Part of the Biology Commons

Citation of this paper:
https://ir.lib.uwo.ca/biologypub/47
Metabolic suppression in mammalian hibernation: the role of mitochondria

James F. Staples*

ABSTRACT
Hibernation evolved in some small mammals that live in cold environments, presumably to conserve energy when food supplies are low. Throughout the winter, hibernators cycle spontaneously between torpor, with low metabolism and near-freezing body temperatures, and euthermia, with high metabolism and body temperatures near 37°C. Understanding the mechanisms underlying this natural model of extreme metabolic plasticity is important for both fundamental and applied science. During entrance into torpor, reductions in metabolic rate begin before body temperatures fall, even when thermogenesis is not active, suggesting active mechanisms of metabolic suppression, rather than passive thermal effects. Mitochondrial respiration is suppressed during torpor, especially when measured in liver mitochondria fuelled with succinate at 37°C in vitro. This suppression of mitochondrial metabolism appears to be invoked quickly during entrance into torpor when body temperature is high, but is reversed slowly during arousal when body temperature is low. This pattern may reflect body temperature-sensitive, enzyme-mediated post-translational modifications of oxidative phosphorylation complexes, for instance by phosphorylation or acetylation.

KEY WORDS: Heat, Body temperature, Thermoregulation, Thermogenesis, Oxidative phosphorylation, Post-translational modification, Acetylation, Phosphorylation

Introduction
Most mammals are strict endotherms, i.e. they maintain fairly constant body temperatures (T_b) near 37°C using heat derived primarily from endogenous metabolism. In cold environments, mammals retain some of this heat by regulating insulation (using underfur and/or subcutaneous fat), peripheral blood circulation (using vasoconstriction and/or countercurrent heat exchangers) and evaporative cooling. At very cold temperatures, the high gradient between T_b and ambient temperature (T_a) causes large heat loss by radiation and conduction, which is also affected by convection of water or air. For small mammals, the high body surface area, relative to volume, results in greater mass-specific rates of heat loss. While large land mammals can increase insulation by changing the quality (microstructure) and quantity (length, density) of underfur, this option is limited for small mammals. Imagine a 70 mm long lemming growing fur 100 mm long; it would be easy prey. Despite the challenges, many small mammals thrive in cold environments. To compensate for high heat losses, these mammals upregulate their capacities to produce metabolic heat. Though effective, this strategy requires large quantities of fuel during winter when food availability is typically low. Many small mammals use stored food to power thermogenic metabolism. For example, American red squirrels (Tamiasciurus hudsonicus) cache spruce cones and feed on the seeds throughout winter, allowing them to maintain T_b near 37°C. Other small mammals, such as the arctic ground squirrel (Urocitellus parryii), evolved a completely different strategy. These hibernators reduce metabolic rate (MR; typically measured as oxygen consumption) by over 90% and permit T_b to fall as low as −2.9°C (Barnes, 1989), allowing them to survive the cold winter solely on energy stored within their bodies.

To illustrate a point, in the preceding paragraph I used obvious examples of animals from sub-polar and polar regions that do and do not (cannot?) hibernate. Mammalian species, however, exhibit a continuum of metabolic and thermoregulatory phenotypes, ranging from strict endotherm to obligate hibernator, in many habitats. A specific definition of hibernation is a matter of seemingly endless debate among biologists, but most agree that it involves significant suppression of MR and lowering of T_b for periods of several days during the winter. Similar phenomena include daily torpor, which involves shorter (<24 h), less intense drops in T_b and metabolism, and estivation, which typically occurs in summer.

Hibernation and similar phenotypes are found in most mammalian and some bird orders, including tropical and subtropical primates (Daussman et al., 2012). Within phylogenetic groups, however, the distribution of the hibernation phenotype is quite broad. For example, three species of sciurid rodent (squirrel family, order Rodentia) share the habitat of my temperate (42.98°N), southern Ontario garden. One is an obligate hibernator (groundhog, Marmota monax), another is a facultative hibernator (eastern chipmunk, Tamius striatus) and the third a strict endotherm (gray squirrel, Sciurus carolinensis). Within this family the hibernation phenotype may relate to circannual fluctuations of a specific blood protein complex (Kondo et al., 2006; Sekijima et al., 2012). These findings suggest the existence of a ‘hibernation induction trigger’, though they would benefit from rigorous independent confirmation. Moreover, comparisons with other mammalian hibernators could provide valuable information regarding the potential function of this protein complex and the evolution of hibernation, a subject beyond the scope of this review (interested readers should consult Geiser (Geiser, 1998)). While hibernation clearly depends on surviving low T_b that would kill most mammals, this review focuses on current knowledge about how hibernators reduce metabolism in order to conserve energy.

Hibernation patterns
Most biologists classify a mammal as a hibernator if its T_b falls below 10°C and its MR falls by over 90% for longer than a day (Geiser, 2011). Unlike hypothermia, the decrease in T_b is controlled andregulated, and hibernators can spontaneously re-warm using solely endogenous metabolic heat. Recovery from hypothermia

*Author for correspondence (jfstaple@uwo.ca)
T greatly exceeds the surface heat loss rate, requiring an exogenous heat source, but hibernators in the wild will sometimes supplement endogenous heat production with exogenous heat. Obligate hibernators apparently follow an endogenous circannual rhythm, and ‘must’ hibernate each year, regardless of environmental conditions. This fact is dramatically illustrated by Richardson’s ground squirrels (Callospermophilus lateralis), born in captivity and maintained under constant light and temperature, hibernated each year, close to when winter would begin in the wild (Pengelley et al., 1976). Facultative hibernators, such as the Syrian hamster (Mesocricetus auratus), can hibernate at any time of the year, but require acclimation for several weeks to cold temperatures. Photoperiod, food availability and food quality, especially polyunsaturated fats (Harlow and Frank, 2001), can also affect facultative hibernation.

As autumn progresses, obligate hibernators, such as ground squirrels, undergo a series of discrete hibernation bouts that can be divided into four stages: (1) entrance, where MR falls rapidly by over 90%, and Tb falls subsequently towards Tb; (2) torpor, where MR and Tb remain low and constant for several days; (3) arousal, where MR spontaneously increases rapidly over a few hours and Tb rises to ca. 37°C; and (4) interbout euthermia (IBE), where MR and Tb remain high and constant for several hours before a new bout begins (Fig. 1). The duration of these phases depends on body mass within (Zervanos et al., 2013) and among species (French, 1985). The reduction in MR and Tb during entrance and torpor undoubtedly conserves energy, but arousal and IBE are quite expensive. In mammals, Tb of true or ‘deep’ hibernators. Despite the modest drop in Tb, bears reduce MR by as much as 75% below basal levels (Teien et al., 2011). As a biochemist, I find this degree of metabolic suppression impressive, so I consider bears to be hibernators!

Temperature, heat and metabolism

Decreases in temperature reduce the rate of enzyme-catalyzed reactions (the so-called Arrhenius or Q10 effect) (Hochachka and Somero, 2002), so in hibernators the drop in Tb during entrance, on its own, will reduce MR passively. However, the drop in MR precedes the drop in Tb, suggesting an active, regulated metabolic suppression. This initial drop in MR is probably due mostly to coordinated changes in thermoregulation. In mammals, Tb is regulated by neurons in the pre-optic anterior hypothalamus that establish the thermoregulatory set-point (Tset). If Tb falls below Tset, heat conservation mechanisms are activated. These mechanisms,
Mitochondria and hibernation

As the main sites of oxygen consumption and heat production, mitochondria have been studied for decades in hibernators (for review, see Staples and Brown, 2008). Designing hibernation experiments is inherently complicated because it is not always clear what conditions should be compared. For example, many early metabolic studies compared animals in torpor with summer euthermic ones. While MR and T_b certainly differed between these groups, many other conditions also differed including T_s, photoperiod and feeding. Recent studies have attempted to control these variables by including comparison groups within the winter hibernation season (e.g. Nelson et al., 2009). In the 13-lined ground squirrel (Ictidomys tridecemlineatus) we found modest (ca. 30%) suppression of mitochondrial respiration (under near-maximal ‘state 3’ conditions; see Glossary) in skeletal (Brown et al., 2012) and cardiac muscle (Brown et al., 2014) during torpor, but brain cortex mitochondria exhibit no apparent suppression (Gallagher and Staples, 2013). In contrast, mitochondria isolated from the liver of torpid ground squirrels exhibit state 3 respiration up to 70% lower than those from animals in IBE or summer conditions (Muleme et al., 2006; Brown et al., 2013). A similar, if less extreme, pattern is seen in mitochondria isolated from animals that undergo daily torpor (Brown et al., 2007), though it may be limited to specific tissues, especially the liver (Kutschke et al., 2013). This similarity raises the possibility that all forms of mammalian hypometabolism share common mechanisms and, perhaps, evolutionary origins.

The impressive degree of suppression in hibernation depends on experimental conditions, being greatest with succinate as a substrate. Succinate metabolism is relatively simple, requiring only transport across the inner mitochondrial membrane and oxidation by ETS complex II. Metabolism of pyruvate or fatty acid derivatives is more complex, and includes oxidation through the Krebs cycle. Suppression of liver mitochondrial respiration in torpor is more modest with these substrates, suggesting that much of the suppression occurs at or downstream of complex II.

Experimental temperature also affects mitochondrial metabolic suppression in torpor. This observation exemplifies the complexity of designing hibernation experiments; liver mitochondria from IBE ground squirrels were at ca. 37°C in their ‘native’ state before isolation, while those from torpid animals were at ca. 5°C. So at what in vitro temperature should one measure respiration? Using a range of temperatures, we found the greatest suppression at 37°C. At 25°C, suppression was still significant in torpor but more modest; however, at 10°C, torpor could not be statistically distinguished from IBE (Fig. 3) (Brown et al., 2012). These findings suggest that

Fig. 2. Typical animal mitochondrial bioenergetics. The electron transport system (ETS) enzyme complexes associate with the inner mitochondrial membrane (IMM). NADH is oxidized by complex I and succinate by complex II. Electrons from these substrates are transferred to the mobile carrier coenzyme Q (Q), which transfers them to complex III, and subsequently to complex IV via cytochrome c (C). Approximately 40% of free energy released by substrate oxidation is used by complexes I, III and IV to pump protons from the matrix to the intermembrane space (IMS), between the IMM and the outer mitochondrial membrane (OMM). The remainder of the free energy is released as heat. The IMM of mammalian brown adipose tissue contains little complex V but, uniquely, significant amounts of uncoupling protein 1 (UCP1). When activated, protons flow from the IMS through UCP1 into the matrix, stimulating ETS substrate oxidation and heat production, but no ATP synthesis.
active suppression of mitochondrial metabolism may have a greater impact on whole-animal MR in the initial stages of entrance, before Tb falls substantially, so we investigated mitochondrial metabolism throughout a torpor bout. Respiration increases ca. 2-fold between torpor (Tb 5°C) and early arousal (Tb 15°C), and another 2-fold between early and late arousal (Tb 30°C). Respiration does not peak until Tb reaches ca. 37°C in IBE (Armstrong and Staples, 2010). In contrast, respiration is suppressed rapidly during entrance; between IBE and early entrance (Tb 30°C), respiration falls by 70% and does not differ from that at late entrance (Tb 15°C) or torpor (Chung et al., 2011) (Fig. 4). These data suggest that mitochondrial metabolism is suppressed by active mechanisms early in entrance.

Mechanisms of metabolic suppression

The changes in mitochondrial respiration throughout a torpor bout suggest mechanisms that might underlie them. The expression of many genes changes throughout hibernation bouts (Hittel and Storey, 2002), contributing to many proteomic changes (Epperson et al., 2010), but these are unlikely to explain all of the observed changes in mitochondrial metabolism. Mitochondrial respiration appears to be suppressed quite quickly in entrance, probably faster than changes in transcription and translation occur. Moreover, peptide elongation in hibernators ceases below 18°C (van Breukelen and Martin, 2001) but in early arousal, when Tb is much lower, mitochondrial respiration increases significantly. Our search for mechanisms, therefore, has focused on acute regulation of pre-existing proteins.

Succinate is transported across the inner mitochondrial membrane by the dicarboxylate transporter, so the observed suppression of succinate respiration may be caused simply by inhibition of this transporter. The dicarboxylate transporter may be inhibited by excesses of co-enzyme A conjugates of long-chain fatty acids, and this inhibition can be relieved by the addition of carnitine. However, we found no evidence that succinate transport is differentially regulated in liver mitochondria from torpid versus IBE ground squirrels (Cooper et al., 2014). Moreover, the apparent affinity for succinate oxidation by intact mitochondria does not differ between these two conditions, arguing against changes in the kinetics of succinate transport (Brown et al., 2013).

Metabolomic changes do occur between torpor and IBE (Nelson et al., 2009; Nelson et al., 2010), and ETS complex II is inhibited by oxaloacetate, a Krebs cycle intermediate. We found that complex II was indeed inhibited by oxaloacetate in torpor and early arousal, but relief of this inhibition (by preincubation with isocitrate) did not fully ‘rescue’ state 3 respiration to IBE levels. At most, metabolite inhibition of complex II can account for 25% of this suppression (Armstrong and Staples, 2010).

A role for post-translational modifications?

The dynamics of mitochondrial respiration throughout a torpor bout points to a temperature-sensitive mechanism – suppression occurs rapidly during entrance when Tb is fairly high but is reversed only slowly during arousal when Tb starts at low levels. Enzymes that covalently modify other enzymes, for example by phosphorylation or acetylation, could account for this pattern. Indeed, muscle phosphoglucomutase, a cytosolic enzyme, is differentially phosphorylated among hibernation states (Hindle et al., 2011).

Within mitochondria, soluble adenylyl cyclase (sAC) can be activated by changes in the content of ATP, Ca2+ and HCO3− (Valsecchi et al., 2013). Activation of sAC would stimulate intramitochondrial protein kinase A (PKA) (Schwoch et al., 1990), which can phosphorylate many ETS proteins (Valsecchi et al., 2013), altering their activity (Lee et al., 2005; Tomitsuka et al., 2009; Phillips et al., 2012). Because sAC and PKA are temperature sensitive, such a mechanism could explain the pattern of mitochondrial suppression in hibernators, but to date no changes in the phosphorylation of mitochondrial proteins have been found among torpor bout phases, though seasonal differences are evident (Chung et al., 2013).

Three protein deacetylases, SIRT3, SIRT4 and SIRT5, are found within the matrix of mammalian mitochondria (Anderson and Hirschey, 2012). Fasting increases liver mitochondrial SIRT3 expression, affecting oxidative metabolism (Hirschey et al., 2010). SIRT3-mediated deacetylation alters ETS complex II activity (Cimen et al., 2010), a result that is particularly relevant to hibernators given the 70% suppression of succinate oxidation in torpor. To my knowledge, however, no studies have sought differential acetylation of mitochondrial proteins among torpor stages.

Obviously dephosphorylation and acetylation may also play roles in regulating mitochondrial metabolism in hibernation, but I know of no studies that demonstrate intramitochondrial acetylase or phosphatase activities. Moreover, I know of no studies that have examined other forms of post-translational modifications, such as S-nitrosylation, nitration and glutathionylation, in hibernation.
The ability of hibernators to cycle between the typical pattern of high MR and warm Tb to one of low metabolism and near-freezing Tb represents an inherently fascinating natural phenomenon. Besides inspiring curiosity, hibernation may represent an ancestral condition, so understanding such metabolic plasticity may inform research on mammalian evolution. Understanding the regulation between ATP supply and demand is important for understanding some pathological conditions (Covian and Balaban, 2012), and hibernators offer a natural model with insights not available from traditional mammalian models. Hibernators also appear to be resistant to ischemia/reperfusion injury (Lindell et al., 2005; Dave et al., 2006) and the ability to reversibly suppress oxidative metabolism is probably key to this resistance. For all of these reasons, the study of the reversible suppression of mitochondrial metabolism in mammalian hibernators promises to advance both fundamental and applied science for years to come.

Competing interests
The author declares no competing financial interests.

References
Daussman, K. H., Nowack, J., Kobbe, S. and Mzilikazi, N. (2012). Afrotropical hibernators offer a natural model with insights not available from traditional mammalian evolution. Understanding the regulation between ATP supply and demand is important for understanding some pathological conditions (Covian and Balaban, 2012), and hibernators offer a natural model with insights not available from traditional mammalian models. Hibernators also appear to be resistant to ischemia/reperfusion injury (Lindell et al., 2005; Dave et al., 2006) and the ability to reversibly suppress oxidative metabolism is probably key to this resistance. For all of these reasons, the study of the reversible suppression of mitochondrial metabolism in mammalian hibernators promises to advance both fundamental and applied science for years to come.