EXPLAINING SCIENCE
Integrating Science Literacy Into a Research-Based Undergraduate Program
Andrew Colgoni, Sarah Symons, Chad Harvey and Carolyn Eyles
Outline

1. About the Integrated Science program
2. The goals of Science Literacy
3. The implementation of Science Literacy
What is iSci?

• New – introduced September 2009

• Interdisciplinary, research-based science program

• Limited enrolment program targeted toward highly motivated, high achieving students

• Small class sizes (max. 60/year)

• Collaborative, self-directed learning
Research Project as Focus

<table>
<thead>
<tr>
<th>Term 1</th>
<th>Term 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundation Concepts</td>
<td>Energy</td>
</tr>
<tr>
<td>[Diagram]</td>
<td>[Diagram]</td>
</tr>
<tr>
<td>Size & Scale</td>
<td>Populations</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Problem-based research projects
- Interactive teaching support
Mission to Mars

- Plan a manned/unmanned mission to Mars
- Make design decisions about: rocket design, propulsion, landing site
- Determine what you will research on the planet
- Write report and present results
Role of the Library

- Home-base in library
- Librarian embedded into program
- Students heavy users of ‘found’ information early on
Science Literacy Vision

“The iSci program will also intentionally teach "literacy" in its broadest sense. This component will be one of its most distinctive features, unlike any other science undergraduate program in Canada.”

“Steps towards fostering scientific literacy will be embedded within the core components of the iSci program.”

Science Literacy Vision

- “Developing [writing] skills... frequently...”
- “poster session”
- “…best use of research resources”
- “…assessing [information] quality”
- “…instilling... research ethics”
- “…collaboration with... library representatives”

Science Literacy Model

Weekly 2hr class (level I)

Team Taught

Assessed Component (level I-IV)

project marks attached to drafts and/or final deliverables

non-project marks: blog writing, participation
Outline of programming

- Regular scientific writing (blog)
- Project deliverables: presentations, posters, reports, debate, book creation, etc.
- Classroom activities
The Missing Xenon

Fluorine and xenon chemistry is a branch of science that is filled with groundbreaking and starting discoveries that were once believed to be unattainable. Xenon, for example, was once thought to be synthesized from the sun and not found on Earth. The discovery of xenon on Earth, however, has opened up new possibilities for research and application in various fields.

Three-Way Mutualism: Ants, Fungus and Bacteria

Ants are one of the few organisms that grow their own food. Ant agriculture is thought to have originated 50 million years ago in South America when ants entered a mutualistic relationship with the many species of fungus they harvested (Shultz 2009). In this relationship, ants nurture the fungus to increase fungal growth while in turn providing the ants with a food source. This provides an efficient method of foraging for both organisms, indicating that the association of ants with fungus is highly evolved (Dugatkin 2009).

Fungus-growing ant species, belonging to the attine family, also protect their fungus gardens against parasites by introducing a third organism to the mutualistic relationship (Shultz 2009). Ants that work in a fungus garden have a white crust on their body that was discovered to be the bacteria Streptomyces. Streptomyces produces antibiotics specifically effective against Escovopsis, a parasite that causes the fungus serious harm. Less dangerous parasites are not susceptible to the antibiotics. Only the ants that work in the fungus garden were observed to have the bacteria on their body. These female worker ants are also responsible for starting a new ant nest and transmitting the bacteria to the new ant population. Ants pass the bacteria down to their offspring to ensure the next generation has the bacteria to protect their food source (Dugatkin 2009).

Atline ants clean the fungus garden by collecting the Escovopsis spores and hyphae in the garden and placing them in their intrabuccal pocket. The intrabuccal pocket contains the Streptomyces bacteria, which produces antibiotics that kill the spores and hyphae. The ants then dispose of the dead spores and hyphae outside of the fungus garden (Dugatkin 2009).

Ants have evolved an efficient method of cultivating food through their mutualistic association with fungus. They have also found a way of defending their food source by adding a third mutualist, Streptomyces bacteria, to the relationship (Dugatkin 2009). This complex mutualism illustrates the marvels of nature: long before humans even contemplated agriculture, three organisms developed an effective system of farming that has stood up to 50 million years of evolutionary testing.

References:

Another nonorientable surface is the Klein bottle. A Klein bottle (named after the German mathematician Felix Klein, 1849-1925) is similar to a Möbius band in that it has only one side. In addition, Klein bottles have no boundary (no ‘edge’); they are continuous, smooth surfaces. Klein bottles can be constructed from a rectangular sheet by attaching the long edges together without a twist, cutting a cylinder, and attaching the short edge together after one half-twist (Stewart, 2010). Various Klein bottles are shown below.

The surface of the Klein bottle must pass through itself in order to perform the topologists ignore this intersection, since it can be avoided in higher dimensions, but its effect should be avoided when constructing a model in 3 dimensions (Stewart, 2010).

The fact that a Klein bottle has only one ‘side’, there is no ‘inside’ and no ‘outside’ to the bottle. It is not a solid, but a surface, and therefore the volume of any Klein bottle is zero; (Stewart, 2010).

Force of Nothing: Casimir Force

The casimir effect describes a force generated by a quantized field and was mathematically discovered by Hendrik Casimir in 1948. It is a consequence of quantum electrodynamics that there is an attractive force between two uncharged metal plates due to zero-point fluctuations of electromagnetic field. The casimir force has two components: thermal and quantum component. The thermal component is related to temperature and arises from thermal fluctuations in the field, the quantum component arises from quantum fluctuations. Although the casimir force is very small, it can be significant in certain situations, such as in the design of low-noise electronic components.
• peer-commenting required (participation)

• Feedback by TAs in comments

• One week for editing draft version

• Assessed: best three posts (students choice)
Project Deliverables

- High-stakes, collaborative project work
- Varies: Written Report + Presentation/Poster/Debate
- History of the Earth: book
Classroom Activities

- Usually involves pairing a short lecture with a longer activity
- Often tied to deliverables
- Offer a variety of instructional methods, including: discussions, clicker quizzes, peer feedback, worksheets, lecture, etc.
- Revisit themes: communication, academic integrity, writing, information literacy
Information Literacy

- Distinguishing btw. sources, using databases, advanced searching, RefWorks, citing
- Often just-in-time
- Might be a quick lesson or a full activity, depending
Evaluating Sources

- Students worked in small groups, each at a computer.
- Each group given a URL to a website.
- Evaluated website and then reported to the class on their verdict.
- Each website could be seen by the whole class.
Presentation skills

- Watch and critique videos of presentations
- Collaborate on best practices document
- Provide students with low stakes practice

Presentations: The iSci Guide to Best Practice

Preparation

- Use props as necessary (i.e., cue cards and visuals)
- Practice, practice practice!
- Preparation brings up the choice between memorization and speaking extemporaneously; choose wisely according to personal preference.
- Know your content back to front, but don’t memorize a script.
- Test the technology
- Have a back-up plan
- If presenting in a group, be sure that there’s no overlap in content; aim for good flow, good transitioning, etc.
- Stay calm
- Wear appropriate clothes
- Coherence between sentences
- Don’t fidget; it’s extremely distracting for people sitting in the audience
- Do not chew gum while presenting

Structure

- Introduction, main headings throughout, conclusion
- Try to have a logical sequence of slides, so that the presentation flows
- Avoid cluttering your slides with too much information; keep it simple

McMaster University

iSci
Poster design

• Send students out into the campus to find posters. Get them to photograph and then come back to discuss.

• Offer guidelines on creation, formatting, etc.

• Feedback on draft version
Future Planning

- End of year symposium
- Level Three project deliverables: podcasting, web magazine, instruction
- Independent study project
- Tweaking Level One class
In Conclusion